This file is indexed.

/usr/lib/ruby/vendor_ruby/integration.rb is in ruby-integration 0.1.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
# Copyright (c) 2005  Beng (original code)
#               2011  clbustos
# 
# Permission is hereby granted, free of charge, to any person obtaining a
# copy of this software and associated documentation files (the "Software"),
# to deal in the Software without restriction, including without limitation
# the rights to use, copy, modify, merge, publish, distribute, sublicense,
# and/or sell copies of the Software, and to permit persons to whom the
# Software is furnished to do so, subject to the following conditions:
# 
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
# 
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
# THE X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
# WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF
# OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# 
# Except as contained in this notice, the name of the Beng shall not
# be used in advertising or otherwise to promote the sale, use or other dealings
# in this Software without prior written authorization from Beng.

# Diverse integration methods
# Use Integration.integrate as wrapper to direct access to methods
# 
# Method API 
#

class Integration
  VERSION = '0.1.0'
  # Minus Infinity
  MInfinity=:minfinity
  # Infinity
  Infinity=:infinity
  class << self
    
    # Create a method 'has_<library>' on Module
    # which require a library and return true or false
    # according to success of failure 
    def create_has_library(library) #:nodoc:
      define_singleton_method("has_#{library}?") do
        cv="@@#{library}"
        if !class_variable_defined? cv
          begin 
            require library.to_s
            class_variable_set(cv, true)
          rescue LoadError
            class_variable_set(cv, false)
          end
        end
        class_variable_get(cv)
      end
    end
    
    # Rectangle method
    # +n+ implies number of subdivisions
    def rectangle(t1, t2, n)
      total_area = 0
      t = t1
      dt = (t2 - t1) / n.to_f
      dt_half = dt / 2
      
      while (t + dt_half) <= t2
      height = yield(t + dt_half)
      area = dt * height
      total_area += area
      t += dt
      end
      return total_area

    end
    alias_method :midpoint, :rectangle
  
    def trapezoid(t1, t2, n)
      total_area = 0
      t = t1
      dt = (t2 - t1) / n.to_f
      prev_height = nil
      while (t + dt) <= t2
        if prev_height.nil?
          height1 = yield(t)
        else
          height1 = prev_height
        end
        height2 = yield(t + dt)
        area = dt * ((height1 + height2) / 2)
        total_area += area
        t += dt
        prev_height = height2
      end
      return total_area
    end
  
    def simpson(t1, t2, n)
      n += 1 unless n % 2 == 0
      dt = (t2.to_f - t1) / n
      total_area = 0
      (0..n).each do |i|
        t = t1 + (dt * i)
        if i.zero? || (i == n)
          total_area += yield(t)
        elsif i % 2 == 0
          total_area += 2 * yield(t)
        else
          total_area += 4 * yield(t)
        end
      end
      total_area *= dt / 3
      return total_area
    end
  
    def adaptive_quadrature(a, b, tolerance)
      h = (b.to_f - a) / 2
      fa = yield(a)
      fc = yield(a + h)
      fb = yield(b)
      s = h * (fa + (4 * fc) + fb) / 3
      helper = Proc.new { |a, b, fa, fb, fc, h, s, level|
        if level < 1/tolerance.to_f
          fd = yield(a + (h / 2))
          fe = yield(a + (3 * (h / 2)))
          s1 = h * (fa + (4.0 * fd) + fc) / 6
          s2 = h * (fc + (4.0 * fe) + fb) / 6
          if ((s1 + s2) - s).abs <= tolerance
            s1 + s2
          else
            helper.call(a, a + h, fa, fc, fd, h / 2, s1, level + 1) +
            helper.call(a + h, b, fc, fb, fe, h / 2, s2, level + 1)
          end
        else
          raise "Integral did not converge"
        end
      }
      return helper.call(a, b, fa, fb, fc, h, s, 1)
    end
  
    def gauss(t1, t2, n)
      case n
        when 1
          z = [0.0]
          w = [2.0]
        when 2
          z = [-0.57735026919, 0.57735026919]
          w = [1.0, 1.0]
        when 3
          z = [-0.774596669241, 0.0, 0.774596669241]
          w = [0.555555555556, 0.888888888889, 0.555555555556]
        when 4
          z = [-0.861136311594, -0.339981043585, 0.339981043585, 0.861136311594]
          w = [0.347854845137, 0.652145154863, 0.652145154863, 0.347854845137]
        when 5
          z = [-0.906179845939, -0.538469310106, 0.0, 0.538469310106, 0.906179845939]
          w = [0.236926885056, 0.478628670499, 0.568888888889, 0.478628670499, 0.236926885056]
        when 6
          z = [-0.932469514203, -0.661209386466, -0.238619186083, 0.238619186083, 0.661209386466, 0.932469514203]
          w = [0.171324492379, 0.360761573048, 0.467913934573, 0.467913934573, 0.360761573048, 0.171324492379]
        when 7
          z = [-0.949107912343, -0.741531185599, -0.405845151377, 0.0, 0.405845151377, 0.741531185599, 0.949107912343]
          w = [0.129484966169, 0.279705391489, 0.381830050505, 0.417959183673, 0.381830050505, 0.279705391489, 0.129484966169]
        when 8
          z = [-0.960289856498, -0.796666477414, -0.525532409916, -0.183434642496, 0.183434642496, 0.525532409916, 0.796666477414, 0.960289856498]
          w = [0.10122853629, 0.222381034453, 0.313706645878, 0.362683783378, 0.362683783378, 0.313706645878, 0.222381034453, 0.10122853629]
        when 9
          z = [-0.968160239508, -0.836031107327, -0.613371432701, -0.324253423404, 0.0, 0.324253423404, 0.613371432701, 0.836031107327, 0.968160239508]
          w = [0.0812743883616, 0.180648160695, 0.260610696403, 0.31234707704, 0.330239355001, 0.31234707704, 0.260610696403, 0.180648160695, 0.0812743883616]
        when 10
          z = [-0.973906528517, -0.865063366689, -0.679409568299, -0.433395394129, -0.148874338982, 0.148874338982, 0.433395394129, 0.679409568299, 0.865063366689, 0.973906528517]
          w = [0.0666713443087, 0.149451349151, 0.219086362516, 0.26926671931, 0.295524224715, 0.295524224715, 0.26926671931, 0.219086362516, 0.149451349151, 0.0666713443087]
        else
          raise "Invalid number of spaced abscissas #{n}, should be 1-10"
      end
      sum = 0
      (0...n).each do |i|
        t = ((t1.to_f + t2) / 2) + (((t2 - t1) / 2) * z[i])
        sum += w[i] * yield(t)
      end
      return ((t2 - t1) / 2.0) * sum
    end
  
    def romberg(a, b, tolerance)
      # NOTE one-based arrays are used for convenience
      
      h = b.to_f - a
      m = 1
      close = 1
      r = [[], [], [], [], [], [], [], [], [], [], [], [], []];
      r[1][1] = (h / 2) * (yield(a) + yield(b))
      j = 1
      while j <= 11 && tolerance < close
        j += 1
        r[j][0] = 0
        h /= 2
        sum = 0
        (1..m).each do |k|
          sum += yield(a + (h * ((2 * k) - 1)))
        end
        m *= 2
        r[j][1] = r[j-1][1] / 2 + (h * sum)
        (1..j-1).each do |k|
          r[j][k+1] = r[j][k] + ((r[j][k] - r[j-1][k]) / ((4 ** k) - 1))
        end
        close = (r[j][j] - r[j-1][j-1])
      end
      return r[j][j]
    end
  
    def monte_carlo(t1, t2, n)
      width = (t2 - t1).to_f
      height = nil
      vals = []
      n.times do
        t = t1 + (rand() * width)
        ft = yield(t)
        height = ft if height.nil? || ft > height
        vals << ft
      end
      area_ratio = 0
      vals.each do |ft|
        area_ratio += (ft / height.to_f) / n.to_f
      end
      return (width * height) * area_ratio
    end
    def is_infinite?(v)
      v==Infinity or v==MInfinity
    end
    # Methods available on pure ruby
    RUBY_METHOD=[:rectangle,:trapezoid,:simpson, :adaptive_quadrature , :gauss, :romberg, :monte_carlo]
    # Methods available with Ruby/GSL library
    GSL_METHOD=[:qng, :qag]
    # Get the integral for a function +f+, with bounds +t1+ and
    # +t2+ given a hash of +options+. 
    # If Ruby/GSL is available, you could use +Integration::Minfinity+
    # and +Integration::Infinity+ as bounds. Method
    # Options are
    # [:tolerance]    Maximum difference between real and calculated integral.
    #                 Default: 1e-10
    # [:initial_step] Initial number of subdivitions
    # [:step]         Subdivitions increment on each iteration
    # [:method]       Integration method. 
    # Methods are
    # [:rectangle] for [:initial_step+:step*iteration] quadrilateral subdivisions
    # [:trapezoid] for [:initial_step+:step*iteration] trapezoid-al subdivisions
    # [:simpson]   for [:initial_step+:step*iteration] parabolic subdivisions
    # [:adaptive_quadrature] for recursive appoximations until error [tolerance]
    # [:gauss] [:initial_step+:step*iteration] weighted subdivisons using translated -1 -> +1 endpoints
    # [:romberg] extrapolation of recursion approximation until error < [tolerance]
    # [:monte_carlo] make [:initial_step+:step*iteration] random samples, and check for above/below curve
    # [:qng] GSL QNG non-adaptive Gauss-Kronrod integration
    # [:qag] GSL QAG adaptive integration, with support for infinite bounds
    def integrate(t1,t2,options=Hash.new, &f)
      inf_bounds=(is_infinite?(t1) or is_infinite?(t2))
      raise "No function passed" unless block_given?
      raise "Non-numeric bounds" unless ((t1.is_a? Numeric) and (t2.is_a? Numeric)) or inf_bounds
      if(inf_bounds)
        lower_bound=t1
        upper_bound=t2
        options[:method]=:qag if options[:method].nil?
      else 
        lower_bound = [t1, t2].min
        upper_bound = [t1, t2].max
      end
      def_method=(has_gsl?) ? :qag : :simpson
      default_opts={:tolerance=>1e-10, :initial_step=>16,:step=>16, :method=>def_method}
      options=default_opts.merge(options)
      if RUBY_METHOD.include? options[:method]
        raise "Ruby methods doesn't support infinity bounds" if inf_bounds
        integrate_ruby(lower_bound,upper_bound,options,&f)
      elsif GSL_METHOD.include? options[:method]
        integrate_gsl(lower_bound,upper_bound,options,&f)
      else
        raise "Unknown integration method \"#{options[:method]}\""
      end
    end
    def integrate_gsl(lower_bound,upper_bound,options,&f) 
      
      f = GSL::Function.alloc(&f)
      method=options[:method]
      tolerance=options[:tolerance]
     
      if(method==:qag)
        w = GSL::Integration::Workspace.alloc()
        if(is_infinite?(lower_bound) and  is_infinite?(upper_bound))        
          #puts "ambos"
          val=f.qagi([tolerance,0.0], 1000, w)  
        elsif is_infinite?(lower_bound)
          #puts "inferior #{upper_bound}"
          val=f.qagil(upper_bound, [tolerance, 0], w) 
        elsif is_infinite?(upper_bound)
          #puts "superior"
          val=f.qagiu(lower_bound, [tolerance, 0], w)
        else
          
          val=f.qag([lower_bound,upper_bound],[tolerance,0.0], GSL::Integration::GAUSS61, w)
        end
      elsif(method==:qng)
        val=f.qng([lower_bound, upper_bound], [tolerance, 0.0]) 
      else
        raise "Unknown integration method \"#{method}\""
      end
      val[0]
    end
    def integrate_ruby(lower_bound,upper_bound,options,&f)
      method=options[:method]
      tolerance=options[:tolerance]
      initial_step=options[:initial_step]
      step=options[:step]
      
      begin
        method_obj = Integration.method(method.to_s.downcase)
      rescue
        raise "Unknown integration method \"#{method}\""
      end
      current_step=initial_step

      if(method==:adaptive_quadrature or method==:romberg  or method==:gauss)
        if(method==:gauss)
          initial_step=10 if initial_step>10
          tolerance=initial_step
        end
        method_obj.call(lower_bound, upper_bound, tolerance, &f)
      else
        #puts "iniciando"
        value=method_obj.call(lower_bound, upper_bound, current_step, &f)
        previous=value+(tolerance*2)
        while((previous-value).abs > tolerance) do
          #puts(value)
          #puts(current_step)
          current_step+=step
          previous=value
          value=method_obj.call(lower_bound, upper_bound, current_step, &f)
        end
        value
      end
    end
  end
  create_has_library :gsl
end