/usr/share/systemtap/runtime/linux/namespaces.h is in systemtap-common 2.9-2ubuntu2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | /* -*- linux-c -*-
* Namespace Functions
* Copyright (C) 2015 Red Hat Inc.
*
* This file is part of systemtap, and is free software. You can
* redistribute it and/or modify it under the terms of the GNU General
* Public License (GPL); either version 2, or (at your option) any
* later version.
*/
#ifndef _LINUX_NAMESPACES_H_
#define _LINUX_NAMESPACES_H_
#if defined(CONFIG_PID_NS)
#include <linux/pid_namespace.h>
#endif
#if defined(CONFIG_USER_NS)
#include <linux/user_namespace.h>
#endif
typedef enum {
PID,
TID,
PGRP,
SID
} PIDINFOTYPE;
typedef enum {
UID,
EUID,
GID,
EGID
} USERINFOTYPE;
// The get_task_from_pid() function assumes the rcu_read_lock is
// held. The returned task_struct, if not NULL, has its reference
// count increased. Callers must call put_task_struct() when finished
// to decrease the reference count.
//
// Also note that the returned task_struct pointer, if not NULL,
// should be a valid task_struct pointer that doesn't need to be
// dereferenced before using.
static struct task_struct *get_task_from_pid(int target_pid)
{
struct task_struct *target_ns_task = NULL;
#if defined(CONFIG_PID_NS) || defined(CONFIG_USER_NS)
struct pid *target_ns_pid;
// can't use find_get_pid() since it ends up looking for the
// STP_TARGET_NS_PID in the current process' ns, when the PID is
// what's seen in the init ns (I think)
target_ns_pid = find_pid_ns(target_pid, &init_pid_ns);
if (!target_ns_pid)
return NULL;
// use pid_task instead of since we want to handle our own locking
target_ns_task = pid_task(target_ns_pid, PIDTYPE_PID);
if (!target_ns_task)
return NULL;
get_task_struct(target_ns_task);
#endif
return target_ns_task;
}
// The get_pid_namespace() function assumes the rcu_read_lock is
// held. The returned pid_namespace, if not NULL, has its reference
// count increased. Callers must call put_pid_ns() when finished to
// decrease the reference count.
static struct pid_namespace *get_pid_namespace(int target_ns)
{
#if defined(CONFIG_PID_NS)
struct task_struct *target_ns_task;
struct pid_namespace *target_pid_ns;
target_ns_task = get_task_from_pid(target_ns);
if (!target_ns_task)
return NULL;
target_pid_ns = task_active_pid_ns(target_ns_task);
if (target_pid_ns)
get_pid_ns(target_pid_ns);
// there is no put_pid_task(), so do the next best thing
put_task_struct(target_ns_task);
return target_pid_ns;
#else
return NULL;
#endif
}
// The _stp_task_struct_valid() function ensures that 't' is a valid
// task by looking for it on the kernel's task list. Returns 1 if the
// task struct pointer was found, 0 if not found.
static int _stp_task_struct_valid(struct task_struct *t)
{
struct task_struct *grp, *tsk;
int rc = 0;
rcu_read_lock();
do_each_thread(grp, tsk) {
if (tsk == t) {
rc = 1;
goto do_each_thread_out;
}
} while_each_thread(grp, tsk);
do_each_thread_out:
rcu_read_unlock();
return rc;
}
static int from_target_pid_ns(struct task_struct *ts, PIDINFOTYPE type)
{
#if defined(CONFIG_PID_NS) && LINUX_VERSION_CODE >= KERNEL_VERSION(3, 7, 0)
struct pid_namespace *target_pid_ns;
int ret = -1;
// At this point, the caller above us has determined that the memory
// at 'ts' is valid to read. However, we *really* need to know not
// only if this memory is valid to read, but is it a real task
// struct pointer. Why? For example, the task_tgid_nr_ns() function
// calls task_tgid() on 'ts', then passes that result to
// pid_nr_ns(). task_tgid() reads
// ts->group_leader->pids[N]. pid_nr_ns() reads pid->numbers[N].
//
// We could try dereferencing all those items (and hope that the
// kernel implementation of those functions doesn't change), but at
// this point we're getting bogged down in the internals of
// task_tgid(), task_tgid_nr_ns() and pid_nr_ns().
//
// So, instead let's try making sure that 'ts' is a valid task by
// looking for it on the task list. We assume that if 'ts' is
// actually on the task list, we can call task_*_nr_ns() on it
// without accessing invalid memory and causing a kernel crash.
rcu_read_lock();
if (! _stp_task_struct_valid(ts)) {
rcu_read_unlock();
return -1;
}
target_pid_ns = get_pid_namespace(_stp_namespaces_pid);
if (!target_pid_ns) {
rcu_read_unlock();
return -1;
}
switch (type) {
case PID:
ret = task_tgid_nr_ns(ts, target_pid_ns);
break;
case TID:
ret = task_pid_nr_ns(ts, target_pid_ns);
break;
case PGRP:
ret = task_pgrp_nr_ns(ts, target_pid_ns);
break;
case SID:
ret = task_session_nr_ns(ts, target_pid_ns);
break;
}
// done with the pid namespace and the read lock
put_pid_ns(target_pid_ns);
rcu_read_unlock();
return ret;
#else
return -1;
#endif
}
// The get_user_namespace() function assumes the rcu_read_lock is
// held. The returned user_namespace, if not NULL, has its reference
// count increased by get_user_ns(). Callers must call put_user_ns()
// when finished with the returned user_namespace to decrease the
// reference count.
static struct user_namespace *get_user_namespace(int target_ns)
{
#if defined(CONFIG_USER_NS)
struct task_struct *target_ns_task;
struct user_namespace *target_user_ns;
target_ns_task = get_task_from_pid(target_ns);
if (!target_ns_task)
return NULL;
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 29)
target_user_ns = target_ns_task->nsproxy->user_ns;
#else
#if LINUX_VERSION_CODE < KERNEL_VERSION(2, 6, 39)
target_user_ns = (task_cred_xxx(target_ns_task, user))->user_ns;
#else /* LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 39) */
target_user_ns = task_cred_xxx(target_ns_task, user_ns);
#endif
#endif
if (target_user_ns)
get_user_ns(target_user_ns);
put_task_struct(target_ns_task);
return target_user_ns;
#endif /* defined(CONFIG_USER_NS) */
return NULL;
}
static int from_target_user_ns(struct task_struct *ts, USERINFOTYPE type)
{
#if defined(CONFIG_USER_NS)
struct user_namespace *target_user_ns;
int ret = -1;
rcu_read_lock();
target_user_ns = get_user_namespace(_stp_namespaces_pid);
if (!target_user_ns) {
rcu_read_unlock();
return -1;
}
switch (type) {
case UID:
ret = from_kuid_munged(target_user_ns, task_uid(ts));
break;
case EUID:
ret = from_kuid_munged(target_user_ns, task_euid(ts));
break;
case GID:
/* If task_gid() isn't defined, make our own. */
#if !defined(task_gid) && defined(task_cred_xxx)
#define task_gid(task) (task_cred_xxx((task), gid))
#endif
ret = from_kgid_munged(target_user_ns, task_gid(ts));
break;
case EGID:
/* If task_egid() isn't defined, make our own. */
#if !defined(task_egid) && defined(task_cred_xxx)
#define task_egid(task) (task_cred_xxx((task), egid))
#endif
ret = from_kgid_munged(target_user_ns, task_egid(ts));
break;
}
// done with the user namespace and the read lock
put_user_ns(target_user_ns);
rcu_read_unlock();
return ret;
#else
return -1;
#endif
}
#endif /* _LINUX_NAMESPACES_H_ */
|