This file is indexed.

/usr/include/vdr/osd.h is in vdr-dev 2.2.0-5build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
/*
 * osd.h: Abstract On Screen Display layer
 *
 * See the main source file 'vdr.c' for copyright information and
 * how to reach the author.
 *
 * $Id: osd.h 3.6 2015/02/11 09:48:02 kls Exp $
 */

#ifndef __OSD_H
#define __OSD_H

#include <limits.h>
#include <stdio.h>
#include <stdint.h>
#include "config.h"
#include "font.h"
#include "thread.h"
#include "tools.h"

#define OSD_LEVEL_DEFAULT     0
#define OSD_LEVEL_SUBTITLES  10

#define MAXNUMCOLORS 256
#define ALPHA_TRANSPARENT  0x00
#define ALPHA_OPAQUE       0xFF
#define IS_OPAQUE(c)       ((c >> 24) == ALPHA_OPAQUE)
#define TEXT_ALIGN_BORDER  10 // fraction of the font height used for sizing border

enum {
                   //AARRGGBB
  clrTransparent = 0x00000000,
  clrGray50      = 0x7F000000, // 50% gray
  clrBlack       = 0xFF000000,
  clrRed         = 0xFFFC1414,
  clrGreen       = 0xFF24FC24,
  clrYellow      = 0xFFFCC024,
  clrMagenta     = 0xFFB000FC,
  clrBlue        = 0xFF0000FC,
  clrCyan        = 0xFF00FCFC,
  clrWhite       = 0xFFFCFCFC,
  };

enum eOsdError { oeOk, // see also OsdErrorTexts in osd.c
                 oeTooManyAreas,
                 oeTooManyColors,
                 oeBppNotSupported,
                 oeAreasOverlap,
                 oeWrongAlignment,
                 oeOutOfMemory,
                 oeWrongAreaSize,
                 oeUnknown,
               };

typedef uint32_t tColor; // see also font.h
typedef uint8_t tIndex;

inline tColor ArgbToColor(uint8_t A, uint8_t R, uint8_t G, uint8_t B)
{
  return (tColor(A) << 24) | (tColor(R) << 16) | (tColor(G) << 8) | B;
}

inline tColor RgbToColor(uint8_t R, uint8_t G, uint8_t B)
{
  return (tColor(R) << 16) | (tColor(G) << 8) | B;
}

inline tColor RgbToColor(double R, double G, double B)
{
  return RgbToColor(uint8_t(0xFF * R), uint8_t(0xFF * G), uint8_t(0xFF * B));
}

tColor RgbShade(tColor Color, double Factor);
   ///< Returns a brighter (Factor > 0) or darker (Factor < 0) version
   ///< of the given Color.
   ///< If Factor is 0.0, the return value is the unchanged Color,
   ///< If Factor is 1.0, white is returned.
   ///< If Factor is -1.0, black is returned.
   ///< The alpha value of Color is returned unchanged.

tColor HsvToColor(double H, double S, double V);
   ///< Converts the given Hue (0..360), Saturation (0..1) and Value (0..1)
   ///< to an RGB tColor value. The alpha value of the result is 0x00, so
   ///< the caller may need to set it accordingly.

tColor AlphaBlend(tColor ColorFg, tColor ColorBg, uint8_t AlphaLayer = ALPHA_OPAQUE);

class cPalette {
private:
  tColor color[MAXNUMCOLORS];
  int bpp;
  int maxColors, numColors;
  bool modified;
  double antiAliasGranularity;
protected:
  typedef tIndex tIndexes[MAXNUMCOLORS];
public:
  cPalette(int Bpp = 8);
        ///< Initializes the palette with the given color depth.
  virtual ~cPalette();
  void SetAntiAliasGranularity(uint FixedColors, uint BlendColors);
        ///< Allows the system to optimize utilization of the limited color
        ///< palette entries when generating blended colors for anti-aliasing.
        ///< FixedColors is the maximum number of colors used, and BlendColors
        ///< is the maximum number of foreground/background color combinations
        ///< used with anti-aliasing. If this function is not called with
        ///< useful values, the palette may be filled up with many shades of
        ///< a single color combination, and may not be able to serve all
        ///< requested colors. By default the palette assumes there will be
        ///< 10 fixed colors and 10 color combinations.
  int Bpp(void) const { return bpp; }
  void Reset(void);
        ///< Resets the palette, making it contain no colors.
  int Index(tColor Color);
        ///< Returns the index of the given Color (the first color has index 0).
        ///< If Color is not yet contained in this palette, it will be added if
        ///< there is a free slot. If the color can't be added to this palette,
        ///< the closest existing color will be returned.
  tColor Color(int Index) const { return Index < maxColors ? color[Index] : 0; }
        ///< Returns the color at the given Index. If Index is outside the valid
        ///< range, 0 will be returned.
  void SetBpp(int Bpp);
        ///< Sets the color depth of this palette to the given value.
        ///< The palette contents will be reset, so that it contains no colors.
  void SetColor(int Index, tColor Color);
        ///< Sets the palette entry at Index to Color. If Index is larger than
        ///< the number of currently used entries in this palette, the entries
        ///< in between will have undefined values.
  const tColor *Colors(int &NumColors) const;
        ///< Returns a pointer to the complete color table and stores the
        ///< number of valid entries in NumColors. If no colors have been
        ///< stored yet, NumColors will be set to 0 and the function will
        ///< return NULL.
  void Take(const cPalette &Palette, tIndexes *Indexes = NULL, tColor ColorFg = 0, tColor ColorBg = 0);
        ///< Takes the colors from the given Palette and adds them to this palette,
        ///< using existing entries if possible. If Indexes is given, it will be
        ///< filled with the index values that each color of Palette has in this
        ///< palette. If either of ColorFg or ColorBg is not zero, the first color
        ///< in Palette will be taken as ColorBg, and the second color will become
        ///< ColorFg.
  void Replace(const cPalette &Palette);
        ///< Replaces the colors of this palette with the colors from the given
        ///< palette.
  tColor Blend(tColor ColorFg, tColor ColorBg, uint8_t Level) const;
        ///< Determines a color that consists of a linear blend between ColorFg
        ///< and ColorBg. If Level is 0, the result is ColorBg, if it is 255,
        ///< the result is ColorFg. If SetAntiAliasGranularity() has been called previously,
        ///< Level will be mapped to a limited range of levels that allow to make best
        ///< use of the palette entries.
  int ClosestColor(tColor Color, int MaxDiff = INT_MAX) const;
        ///< Returns the index of a color in this palette that is closest to the given
        ///< Color. MaxDiff can be used to control the maximum allowed color difference.
        ///< If no color with a maximum difference of MaxDiff can be found, -1 will
        ///< be returned. With the default value of INT_MAX, there will always be
        ///< a valid color index returned, but the color may be completely different.
  };

enum eTextAlignment { taCenter  = 0x00,
                      taLeft    = 0x01,
                      taRight   = 0x02,
                      taTop     = 0x04,
                      taBottom  = 0x08,
                      taBorder  = 0x10, // keeps some distance from the left or right alignment edge
                      taDefault = taTop | taLeft
                    };

class cFont;

class cBitmap : public cPalette {
private:
  tIndex *bitmap;
  int x0, y0;
  int width, height;
  int dirtyX1, dirtyY1, dirtyX2, dirtyY2;
public:
  cBitmap(int Width, int Height, int Bpp, int X0 = 0, int Y0 = 0);
       ///< Creates a bitmap with the given Width, Height and color depth (Bpp).
       ///< X0 and Y0 define the offset at which this bitmap will be located on the OSD.
       ///< All coordinates given in the other functions will be relative to
       ///< this offset (unless specified otherwise).
  cBitmap(const char *FileName);
       ///< Creates a bitmap and loads an XPM image from the given file.
  cBitmap(const char *const Xpm[]);
       ///< Creates a bitmap from the given XPM data.
  virtual ~cBitmap();
  int X0(void) const { return x0; }
  int Y0(void) const { return y0; }
  int Width(void) const { return width; }
  int Height(void) const { return height; }
  void SetSize(int Width, int Height);
       ///< Sets the size of this bitmap to the given values. Any previous
       ///< contents of the bitmap will be lost. If Width and Height are the same
       ///< as the current values, nothing will happen and the bitmap remains
       ///< unchanged.
  void SetOffset(int X0, int Y0) { x0 = X0; y0 = Y0; }
       ///< Sets the offset of this bitmap to the given values.
  bool Contains(int x, int y) const;
       ///< Returns true if this bitmap contains the point (x, y).
  bool Covers(int x1, int y1, int x2, int y2) const;
       ///< Returns true if the rectangle defined by the given coordinates
       ///< completely covers this bitmap.
  bool Intersects(int x1, int y1, int x2, int y2) const;
       ///< Returns true if the rectangle defined by the given coordinates
       ///< intersects with this bitmap.
  bool Dirty(int &x1, int &y1, int &x2, int &y2);
       ///< Tells whether there is a dirty area and returns the bounding
       ///< rectangle of that area (relative to the bitmaps origin).
  void Clean(void);
       ///< Marks the dirty area as clean.
  bool LoadXpm(const char *FileName);
       ///< Calls SetXpm() with the data from the file FileName.
       ///< Returns true if the operation was successful.
  bool SetXpm(const char *const Xpm[], bool IgnoreNone = false);
       ///< Sets this bitmap to the given XPM data. Any previous bitmap or
       ///< palette data will be overwritten with the new data.
       ///< If IgnoreNone is true, a "none" color entry will be ignored.
       ///< Only set IgnoreNone to true if you know that there is a "none"
       ///< color entry in the XPM data and that this entry is not used!
       ///< If SetXpm() is called with IgnoreNone set to false and the XPM
       ///< data contains an unused "none" entry, it will be automatically
       ///< called again with IgnoreNone set to true.
       ///< Returns true if the operation was successful.
  void SetIndex(int x, int y, tIndex Index);
       ///< Sets the index at the given coordinates to Index.
       ///< Coordinates are relative to the bitmap's origin.
  void Fill(tIndex Index);
       ///< Fills the bitmap data with the given Index.
  void DrawPixel(int x, int y, tColor Color);
       ///< Sets the pixel at the given coordinates to the given Color, which is
       ///< a full 32 bit ARGB value.
       ///< If the coordinates are outside the bitmap area, no pixel will be set.
  void DrawBitmap(int x, int y, const cBitmap &Bitmap, tColor ColorFg = 0, tColor ColorBg = 0, bool ReplacePalette = false, bool Overlay = false);
       ///< Sets the pixels in this bitmap with the data from the given
       ///< Bitmap, putting the upper left corner of the Bitmap at (x, y).
       ///< If ColorFg or ColorBg is given, the first palette entry of the Bitmap
       ///< will be mapped to ColorBg and the second palette entry will be mapped to
       ///< ColorFg (palette indexes are defined so that 0 is the background and
       ///< 1 is the foreground color). ReplacePalette controls whether the target
       ///< area shall have its palette replaced with the one from Bitmap.
       ///< If Overlay is true, any pixel in Bitmap that has color index 0 will
       ///< not overwrite the corresponding pixel in the target area.
  void DrawText(int x, int y, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width = 0, int Height = 0, int Alignment = taDefault);
       ///< Draws the given string at coordinates (x, y) with the given foreground
       ///< and background color and font. If Width and Height are given, the text
       ///< will be drawn into a rectangle with the given size and the given
       ///< Alignment (default is top-left). If ColorBg is clrTransparent, no
       ///< background pixels will be drawn, which allows drawing "transparent" text.
  void DrawRectangle(int x1, int y1, int x2, int y2, tColor Color);
       ///< Draws a filled rectangle defined by the upper left (x1, y1) and lower right
       ///< (x2, y2) corners with the given Color. If the rectangle covers the entire
       ///< bitmap area, the color palette will be reset, so that new colors can be
       ///< used for drawing.
  void DrawEllipse(int x1, int y1, int x2, int y2, tColor Color, int Quadrants = 0);
       ///< Draws a filled ellipse defined by the upper left (x1, y1) and lower right
       ///< (x2, y2) corners with the given Color. Quadrants controls which parts of
       ///< the ellipse are actually drawn:
       ///< 0       draws the entire ellipse
       ///< 1..4    draws only the first, second, third or fourth quadrant, respectively
       ///< 5..8    draws the right, top, left or bottom half, respectively
       ///< -1..-4  draws the inverted part of the given quadrant
       ///< If Quadrants is not 0, the coordinates are those of the actual area, not
       ///< the full circle!
  void DrawSlope(int x1, int y1, int x2, int y2, tColor Color, int Type);
       ///< Draws a "slope" into the rectangle defined by the upper left (x1, y1) and
       ///< lower right (x2, y2) corners with the given Color. Type controls the
       ///< direction of the slope and which side of it will be drawn:
       ///< 0: horizontal, rising,  lower
       ///< 1: horizontal, rising,  upper
       ///< 2: horizontal, falling, lower
       ///< 3: horizontal, falling, upper
       ///< 4: vertical,   rising,  lower
       ///< 5: vertical,   rising,  upper
       ///< 6: vertical,   falling, lower
       ///< 7: vertical,   falling, upper
  const tIndex *Data(int x, int y) const;
       ///< Returns the address of the index byte at the given coordinates.
  tColor GetColor(int x, int y) const { return Color(*Data(x, y)); }
       ///< Returns the color at the given coordinates.
  void ReduceBpp(const cPalette &Palette);
       ///< Reduces the color depth of the bitmap to that of the given Palette.
       ///< If Palette's color depth is not smaller than the bitmap's current
       ///< color depth, or if it is not one of 4bpp or 2bpp, nothing happens. After
       ///< reducing the color depth the current palette is replaced with
       ///< the given one.
  void ShrinkBpp(int NewBpp);
       ///< Shrinks the color depth of the bitmap to NewBpp by keeping only
       ///< the 2^NewBpp most frequently used colors as defined in the current palette.
       ///< If NewBpp is not smaller than the bitmap's current color depth,
       ///< or if it is not one of 4bpp or 2bpp, nothing happens.
  cBitmap *Scaled(double FactorX, double FactorY, bool AntiAlias = false) const;
       ///< Creates a copy of this bitmap, scaled by the given factors.
       ///< If AntiAlias is true and either of the factors is greater than 1.0,
       ///< anti-aliasing is applied. This will also set the color depth of the
       ///< returned bitmap to 8bpp.
       ///< The caller must delete the returned bitmap once it is no longer used.
  };

struct tArea {
  int x1, y1, x2, y2;
  int bpp;
  int Width(void) const { return x2 - x1 + 1; }
  int Height(void) const { return y2 - y1 + 1; }
  bool Intersects(const tArea &Area) const { return !(x2 < Area.x1 || x1 > Area.x2 || y2 < Area.y1 || y1 > Area.y2); }
  };

class cPoint {
private:
  int x;
  int y;
public:
  cPoint(void) { x = y = 0; }
  cPoint(int X, int Y) { x = X; y = Y; }
  cPoint(const cPoint &Point) { x = Point.X(); y = Point.Y(); }
  bool operator==(const cPoint &Point) const { return x == Point.X() && y == Point.Y(); }
  bool operator!=(const cPoint &Point) const { return !(*this == Point); }
  cPoint operator-(void) const { return cPoint(-x, -y); }
  cPoint operator-(const cPoint &Point) const { return cPoint(x - Point.X(), y - Point.Y()); }
  int X(void) const { return x; }
  int Y(void) const { return y; }
  void SetX(int X) { x = X; }
  void SetY(int Y) { y = Y; }
  void Set(int X, int Y) { x = X; y = Y; }
  void Set(const cPoint &Point) { x = Point.X(); y = Point.Y(); }
  void Shift(int Dx, int Dy) { x += Dx; y += Dy; }
  void Shift(const cPoint &Dp) { x += Dp.X(); y += Dp.Y(); }
  cPoint Shifted(int Dx, int Dy) const { cPoint p(*this); p.Shift(Dx, Dy); return p; }
  cPoint Shifted(const cPoint &Dp) const { cPoint p(*this); p.Shift(Dp); return p; }
  };

class cSize {
private:
  int width;
  int height;
public:
  cSize(void) { width = height = 0; }
  cSize(int Width, int Height) { width = Width; height = Height; }
  cSize(const cSize &Size) { width = Size.Width(); height = Size.Height(); }
  bool operator==(const cSize &Size) const { return width == Size.Width() && height == Size.Height(); }
  bool operator!=(const cSize &Size) const { return !(*this == Size); }
  bool operator<(const cSize &Size) const { return width < Size.Width() && height < Size.Height(); }
  int Width(void) const { return width; }
  int Height(void) const { return height; }
  void SetWidth(int Width) { width = Width; }
  void SetHeight(int Height) { height = Height; }
  void Set(int Width, int Height) { width = Width; height = Height; }
  void Set(const cSize &Size) { width = Size.Width(); height = Size.Height(); }
  bool Contains(const cPoint &Point) const { return 0 <= Point.X() && 0 <= Point.Y() && Point.X() < width && Point.Y() < height; }
  void Grow(int Dw, int Dh) { width += 2 * Dw; height += 2 * Dh; }
  cSize Grown(int Dw, int Dh) const { cSize s(*this); s.Grow(Dw, Dh); return s; }
  };

class cRect {
private:
  cPoint point;
  cSize size;
public:
  static const cRect Null;
  cRect(void): point(0, 0), size(0, 0) {}
  cRect(int X, int Y, int Width, int Height): point(X, Y), size(Width, Height) {}
  cRect(const cPoint &Point, const cSize &Size): point(Point), size(Size) {}
  cRect(const cSize &Size): point(0, 0), size(Size) {}
  cRect(const cRect &Rect): point(Rect.Point()), size(Rect.Size()) {}
  bool operator==(const cRect &Rect) const { return point == Rect.Point() && size == Rect.Size(); }
  bool operator!=(const cRect &Rect) const { return !(*this == Rect); }
  int X(void) const { return point.X(); }
  int Y(void) const { return point.Y(); }
  int Width(void) const { return size.Width(); }
  int Height(void) const { return size.Height(); }
  int Left(void) const { return X(); }
  int Top(void) const { return Y(); }
  int Right(void) const { return X() + Width() - 1; }
  int Bottom(void) const { return Y() + Height() - 1; }
  const cPoint &Point(void) const { return point; }
  const cSize &Size(void) const { return size; }
  void Set(int X, int Y, int Width, int Height) { point.Set(X, Y); size.Set(Width, Height); }
  void Set(cPoint Point, cSize Size) { point.Set(Point); size.Set(Size); }
  void SetPoint(int X, int Y) { point.Set(X, Y); }
  void SetPoint(const cPoint &Point) { point.Set(Point); }
  void SetSize(int Width, int Height) { size.Set(Width, Height); }
  void SetSize(const cSize &Size) { size.Set(Size); }
  void SetX(int X) { point.SetX(X); }
  void SetY(int Y) { point.SetY(Y); }
  void SetWidth(int Width) { size.SetWidth(Width); }
  void SetHeight(int Height) { size.SetHeight(Height); }
  void SetLeft(int Left) { SetWidth(Width() + X() - Left); SetX(Left); }
  void SetTop(int Top) { SetHeight(Height() + Y() - Top); SetY(Top); }
  void SetRight(int Right) { SetWidth(Right - X() + 1); }
  void SetBottom(int Bottom) { SetHeight(Bottom - Y() + 1); }
  void Shift(int Dx, int Dy) { point.Shift(Dx, Dy); }
  void Shift(const cPoint &Dp) { point.Shift(Dp); }
  cRect Shifted(int Dx, int Dy) const { cRect r(*this); r.Shift(Dx, Dy); return r; }
  cRect Shifted(const cPoint &Dp) const { cRect r(*this); r.Shift(Dp); return r; }
  void Grow(int Dx, int Dy);
       ///< Grows the rectangle by the given number of pixels in either direction.
       ///< A negative value will shrink the rectangle.
  cRect Grown(int Dw, int Dh) const { cRect r(*this); r.Grow(Dw, Dh); return r; }
  bool Contains(const cPoint &Point) const;
       ///< Returns true if this rectangle contains Point.
  bool Contains(const cRect &Rect) const;
       ///< Returns true if this rectangle completely contains Rect.
  bool Intersects(const cRect &Rect) const;
       ///< Returns true if this rectangle intersects with Rect.
  cRect Intersected(const cRect &Rect) const;
       ///< Returns the intersection of this rectangle and the given Rect.
  void Combine(const cRect &Rect);
       ///< Combines this rectangle with the given Rect.
  cRect Combined(const cRect &Rect) const { cRect r(*this); r.Combine(Rect); return r; }
       ///< Returns the surrounding rectangle that contains this rectangle and the
       ///< given Rect.
  void Combine(const cPoint &Point);
       ///< Combines this rectangle with the given Point.
  cRect Combined(const cPoint &Point) const { cRect r(*this); r.Combine(Point); return r; }
       ///< Returns the surrounding rectangle that contains this rectangle and the
       ///< given Point.
  bool IsEmpty(void) const { return Width() <= 0 || Height() <= 0; }
       ///< Returns true if this rectangle is empty.
  };

class cImage {
private:
  cSize size;
  tColor *data;
public:
  cImage(void);
  cImage(const cImage &Image);
  cImage(const cSize &Size, const tColor *Data = NULL);
       ///< Creates an image with the given Size and allocates the necessary memory
       ///< to copy the pixels pointed to by Data, which is a sequence of
       ///< (Size.Width() * Size.Height()) tColor values.
       ///< If Data is NULL, the allocated memory is not initialized.
       ///< The alpha value of the Image's pixels is taken into account, so it has to be
       ///< greater than 0 for the image to be visible.
  virtual ~cImage();
  const cSize &Size(void) const { return size; }
  int Width(void) const { return size.Width(); }
  int Height(void) const { return size.Height(); }
  const tColor *Data(void) const { return data; }
  tColor GetPixel(const cPoint &Point) const { return data[size.Width() * Point.Y() + Point.X()]; }
       ///< Returns the pixel value at the given Point.
       ///< For performance reasons there is no range check here, so the caller
       ///< must make sure that the Point is within the images size.
  void SetPixel(const cPoint &Point, tColor Color) { data[size.Width() * Point.Y() + Point.X()] = Color; }
       ///< Sets the pixel at the given Point to Color.
       ///< For performance reasons there is no range check here, so the caller
       ///< must make sure that the Point is within the images size.
  void Clear(void);
       ///< Clears the image data by setting all pixels to be fully transparent.
  void Fill(tColor Color);
       ///< Fills the image data with the given Color.
  };

#define MAXPIXMAPLAYERS    8

class cPixmap {
  friend class cOsd;
  friend class cPixmapMutexLock;
private:
  static cMutex mutex;
  int layer;
  int alpha;
  bool tile;
  cRect viewPort;
  cRect drawPort;
  cRect dirtyViewPort;
  cRect dirtyDrawPort;
protected:
  virtual ~cPixmap() {}
  void MarkViewPortDirty(const cRect &Rect);
       ///< Marks the given rectangle of the view port of this pixmap as dirty.
       ///< Rect is combined with the existing dirtyViewPort rectangle.
       ///< The coordinates of Rect are given in absolute OSD values.
  void MarkViewPortDirty(const cPoint &Point);
       ///< Marks the given point of the view port of this pixmap as dirty.
       ///< Point is combined with the existing dirtyViewPort rectangle.
       ///< The coordinates of Point are given in absolute OSD values.
  void MarkDrawPortDirty(const cRect &Rect);
       ///< Marks the given rectangle of the draw port of this pixmap as dirty.
       ///< Rect is combined with the existing dirtyDrawPort rectangle.
       ///< The coordinates of Rect are relative to the pixmap's draw port.
       ///< If Rect extends into the currently visible view port of this pixmap,
       ///< MarkViewPortDirty() is called with the appropriate value.
  void MarkDrawPortDirty(const cPoint &Point);
       ///< Marks the given point of the draw port of this pixmap as dirty.
       ///< Point is combined with the existing dirtyDrawPort rectangle.
       ///< The coordinates of Point are relative to the pixmap's draw port.
       ///< If Point is within the currently visible view port of this pixmap,
       ///< MarkViewPortDirty() is called with the appropriate value.
  void SetClean(void);
       ///< Resets the "dirty" rectangles of this pixmap.
  virtual void DrawPixmap(const cPixmap *Pixmap, const cRect &Dirty);
       ///< Draws the Dirty part of the given Pixmap into this pixmap. If the
       ///< Pixmap's layer is 0, it is copied, otherwise it is rendered into this
       ///< pixmap. This function is used only to implement the tile handling
       ///< in the final rendering to the OSD.
public:
  cPixmap(void);
  cPixmap(int Layer, const cRect &ViewPort, const cRect &DrawPort = cRect::Null);
       ///< Creates a pixmap in the given Layer. When rendering the final OSD, pixmaps
       ///< are handled in ascending order of their individual layer. This is
       ///< important if pixmaps overlap each other. The one with the highest layer is
       ///< rendered last. The actual value of Layer doesn't matter, it is only used
       ///< for defining the rendering sequence. If Layer is less than zero, this
       ///< pixmap will not be rendered into the final OSD (it can be activated by a
       ///< later call to SetLayer()). The value 0 is reserved for the background
       ///< pixmap and shall not be used otherwise (with the sole exception of
       ///< temporarily using layer 0 to have a text with transparent background
       ///< rendered with alpha blending into that pixmap; see also DrawPixel()).
       ///< If there are several pixmaps with the same value of Layer, their rendering
       ///< sequence within that layer is undefined.
       ///< In order to allow devices that can handle only a limited number of layers,
       ///< the Layer parameter must be less than 8 (MAXPIXMAPLAYERS).
       ///< ViewPort defines the rectangle in which this pixmap will be rendered on
       ///< the OSD. If no DrawPort is given, it defaults to the same size as the
       ///< ViewPort, with its upper left corner set to (0, 0).
       ///< All drawing operations will be executed relative to the origin of the
       ///< DrawPort rectangle, and will be clipped to the size of this rectangle.
       ///< The DrawPort may have a different size than the ViewPort. If it is smaller
       ///< than the ViewPort, the rest of the ViewPort is treated as fully transparent
       ///< (unless this is a tiled pixmap, in which case the DrawPort is repeated
       ///< horizontally and vertically to fill the entire ViewPort). If the DrawPort
       ///< is larger than the ViewPort, only that portion of the DrawPort that
       ///< intersects with the ViewPort will be visible on the OSD.
       ///< The drawing area of a newly created cPixmap is not initialized and may
       ///< contain random data.
  static void Lock(void) { mutex.Lock(); }
       ///< All public member functions of cPixmap set locks as necessary to make sure
       ///< they are thread-safe (unless noted otherwise). If several cPixmap member
       ///< functions need to be called in a row, the caller must surround these calls
       ///< with proper Lock()/Unlock() calls. See the LOCK_PIXMAPS macro for a
       ///< convenient way of doing this.
  static void Unlock(void) { mutex.Unlock(); }
  int Layer(void) const { return layer; }
  int Alpha(void) const { return alpha; }
  bool Tile(void) const { return tile; }
  const cRect &ViewPort(void) const { return viewPort; }
       ///< Returns the pixmap's view port, which is relative to the OSD's origin.
       ///< Since this function returns a reference to a data member, the caller must
       ///< use Lock()/Unlock() to make sure the data doesn't change while it is used.
  const cRect &DrawPort(void) const { return drawPort; }
       ///< Returns the pixmap's draw port, which is relative to the view port.
       ///< Since this function returns a reference to a data member, the caller must
       ///< use Lock()/Unlock() to make sure the data doesn't change while it is used.
  const cRect &DirtyViewPort(void) const { return dirtyViewPort; }
       ///< Returns the "dirty" rectangle this pixmap causes on the OSD. This is the
       ///< surrounding rectangle around all pixels that have been modified since the
       ///< last time this pixmap has been rendered to the OSD. The rectangle is
       ///< relative to the OSD's origin.
       ///< Since this function returns a reference to a data member, the caller must
       ///< use Lock()/Unlock() to make sure the data doesn't change while it is used.
  const cRect &DirtyDrawPort(void) const { return dirtyDrawPort; }
       ///< Returns the "dirty" rectangle in the draw port of this this pixmap. This is
       ///< the surrounding rectangle around all pixels that have been modified since the
       ///< last time this pixmap has been rendered to the OSD. The rectangle is
       ///< relative to the draw port's origin.
       ///< Since this function returns a reference to a data member, the caller must
       ///< use Lock()/Unlock() to make sure the data doesn't change while it is used.
  virtual void SetLayer(int Layer);
       ///< Sets the layer of this pixmap to the given value.
       ///< If the new layer is greater than zero, the pixmap will be visible.
       ///< If it is less than zero, it will be invisible.
       ///< A value of 0 will be silently ignored.
       ///< If a derived class reimplements this function, it needs to call the base
       ///< class function.
  virtual void SetAlpha(int Alpha);
       ///< Sets the alpha value of this pixmap to the given value.
       ///< Alpha is limited to the range 0 (fully transparent) to 255 (fully opaque).
       ///< If a derived class reimplements this function, it needs to call the base
       ///< class function.
  virtual void SetTile(bool Tile);
       ///< Sets the tile property of this pixmap to the given value. If Tile is true,
       ///< the pixmaps data will be repeated horizontally and vertically if necessary
       ///< to fill the entire view port.
       ///< If a derived class reimplements this function, it needs to call the base
       ///< class function.
  virtual void SetViewPort(const cRect &Rect);
       ///< Sets the pixmap's view port to the given Rect.
       ///< If a derived class reimplements this function, it needs to call the base
       ///< class function.
  virtual void SetDrawPortPoint(const cPoint &Point, bool Dirty = true);
       ///< Sets the pixmap's draw port to the given Point.
       ///< Only the origin point of the draw port can be modified, its size is fixed.
       ///< By default, setting a new draw port point results in marking the relevant
       ///< part of the view port as "dirty". If Dirty is set to false, the view port
       ///< will not be marked as dirty. This is mainly used to implement the Pan()
       ///< function.
       ///< If a derived class reimplements this function, it needs to call the base
       ///< class function.
  virtual void Clear(void) = 0;
       ///< Clears the pixmap's draw port by setting all pixels to be fully transparent.
       ///< A derived class must call Lock()/Unlock().
  virtual void Fill(tColor Color) = 0;
       ///< Fills the pixmap's draw port with the given Color.
       ///< A derived class must call Lock()/Unlock().
  virtual void DrawImage(const cPoint &Point, const cImage &Image) = 0;
       ///< Draws the given Image into this pixmap at the given Point.
  virtual void DrawImage(const cPoint &Point, int ImageHandle) = 0;
       ///< Draws the image referenced by the given ImageHandle into this pixmap at
       ///< the given Point. ImageHandle must be a value that has previously been
       ///< returned by a call to cOsdProvider::StoreImage(). If ImageHandle
       ///< has an invalid value, nothing happens.
  virtual void DrawPixel(const cPoint &Point, tColor Color) = 0;
       ///< Sets the pixel at the given Point to the given Color, which is
       ///< a full 32 bit ARGB value. If the alpha value of Color is not 0xFF
       ///< (fully opaque), and this is the background pixmap (layer 0), the pixel is
       ///< alpha blended with the existing color at the given position in this pixmap.
  virtual void DrawBitmap(const cPoint &Point, const cBitmap &Bitmap, tColor ColorFg = 0, tColor ColorBg = 0, bool Overlay = false) = 0;
       ///< Sets the pixels in the OSD with the data from the given
       ///< Bitmap, putting the upper left corner of the Bitmap at Point.
       ///< If ColorFg or ColorBg is given, the first palette entry of the Bitmap
       ///< will be mapped to ColorBg and the second palette entry will be mapped to
       ///< ColorFg (palette indexes are defined so that 0 is the background and
       ///< 1 is the foreground color).
       ///< If Overlay is true, any pixel in Bitmap that has color index 0 will
       ///< not overwrite the corresponding pixel in the target area.
       ///< This function is mainly for compatibility with skins or plugins that
       ///< draw bitmaps onto the OSD.
  virtual void DrawText(const cPoint &Point, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width = 0, int Height = 0, int Alignment = taDefault) = 0;
       ///< Draws the given string at Point with the given foreground
       ///< and background color and font. If Width and Height are given, the text
       ///< will be drawn into a rectangle with the given size and the given
       ///< Alignment (default is top-left). If ColorBg is clrTransparent, no
       ///< background pixels will be drawn, which allows drawing "transparent" text.
  virtual void DrawRectangle(const cRect &Rect, tColor Color) = 0;
       ///< Draws a filled rectangle with the given Color.
  virtual void DrawEllipse(const cRect &Rect, tColor Color, int Quadrants = 0) = 0;
       ///< Draws a filled ellipse with the given Color that fits into the given
       ///< rectangle. Quadrants controls which parts of the ellipse are actually drawn:
       ///< 0       draws the entire ellipse
       ///< 1..4    draws only the first, second, third or fourth quadrant, respectively
       ///< 5..8    draws the right, top, left or bottom half, respectively
       ///< -1..-4  draws the inverted part of the given quadrant
       ///< If Quadrants is not 0, the coordinates are those of the actual area, not
       ///< the full circle!
  virtual void DrawSlope(const cRect &Rect, tColor Color, int Type) = 0;
       ///< Draws a "slope" with the given Color into the given rectangle.
       ///< Type controls the direction of the slope and which side of it will be drawn:
       ///< 0: horizontal, rising,  lower
       ///< 1: horizontal, rising,  upper
       ///< 2: horizontal, falling, lower
       ///< 3: horizontal, falling, upper
       ///< 4: vertical,   rising,  lower
       ///< 5: vertical,   rising,  upper
       ///< 6: vertical,   falling, lower
       ///< 7: vertical,   falling, upper
  virtual void Render(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest) = 0;
       ///< Renders the part of the given Pixmap covered by Source into this pixmap at
       ///< location Dest. The Source rectangle is relative to the given Pixmap's draw port.
       ///< The Pixmap's alpha value is to be used when rendering.
  virtual void Copy(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest) = 0;
       ///< Copies the part of the given Pixmap covered by Source into this pixmap at
       ///< location Dest. The Source rectangle is relative to the given Pixmap's draw port.
       ///< The data from Pixmap is copied as is, no alpha handling of any kind takes
       ///< place.
  virtual void Scroll(const cPoint &Dest, const cRect &Source = cRect::Null) = 0;
       ///< Scrolls the data in the pixmap's draw port to the given Dest point.
       ///< If Source is given, only the data within that rectangle is scrolled.
       ///< Source and Dest are relative to this pixmap's draw port.
  virtual void Pan(const cPoint &Dest, const cRect &Source = cRect::Null) = 0;
       ///< Does the same as Scroll(), but also shifts the draw port accordingly,
       ///< so that the view port doesn't get dirty if the scrolled rectangle
       ///< covers the entire view port. This may be of advantage if, e.g.,
       ///< there is a draw port that holds, say, 11 lines of text, while the
       ///< view port displays only 10 lines. By Pan()'ing the draw port up one
       ///< line, a new bottom line can be written into the draw port (without
       ///< being seen through the view port), and later the draw port can be
       ///< shifted smoothly, resulting in a smooth scrolling.
       ///< It is the caller's responsibility to make sure that Source and Dest
       ///< are given in such a way that the view port will not get dirty. No
       ///< check is done whether this condition actually holds true.
  };

class cPixmapMutexLock : public cMutexLock {
public:
  cPixmapMutexLock(void): cMutexLock(&cPixmap::mutex) {}
  };

#define LOCK_PIXMAPS cPixmapMutexLock PixmapMutexLock

// cPixmapMemory is an implementation of cPixmap that uses an array of tColor
// values to store the pixmap.

class cPixmapMemory : public cPixmap {
private:
  tColor *data;
  bool panning;
public:
  cPixmapMemory(void);
  cPixmapMemory(int Layer, const cRect &ViewPort, const cRect &DrawPort = cRect::Null);
  virtual ~cPixmapMemory();
  const uint8_t *Data(void) { return (uint8_t *)data; }
  virtual void Clear(void);
  virtual void Fill(tColor Color);
  virtual void DrawImage(const cPoint &Point, const cImage &Image);
  virtual void DrawImage(const cPoint &Point, int ImageHandle);
  virtual void DrawPixel(const cPoint &Point, tColor Color);
  virtual void DrawBitmap(const cPoint &Point, const cBitmap &Bitmap, tColor ColorFg = 0, tColor ColorBg = 0, bool Overlay = false);
  virtual void DrawText(const cPoint &Point, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width = 0, int Height = 0, int Alignment = taDefault);
  virtual void DrawRectangle(const cRect &Rect, tColor Color);
  virtual void DrawEllipse(const cRect &Rect, tColor Color, int Quadrants = 0);
  virtual void DrawSlope(const cRect &Rect, tColor Color, int Type);
  virtual void Render(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest);
  virtual void Copy(const cPixmap *Pixmap, const cRect &Source, const cPoint &Dest);
  virtual void Scroll(const cPoint &Dest, const cRect &Source = cRect::Null);
  virtual void Pan(const cPoint &Dest, const cRect &Source = cRect::Null);
  };

#define MAXOSDAREAS 16

/// The cOsd class is the interface to the "On Screen Display".
/// An actual output device needs to derive from this class and implement
/// the functionality necessary to display the OSD on the TV screen.
/// If the actual OSD supports "True Color", it can either let VDR do
/// all the rendering by calling RenderPixmaps() ("raw mode"), or it can
/// reimplement all necessary cPixmap functions and do the rendering
/// itself ("high level mode").
/// If an OSD provides a "high level mode", it shall also provide a "raw mode"
/// in order to verify proper operation. The plugin that implements the OSD
/// shall offer a configuration switch in its setup.

class cOsd {
  friend class cOsdProvider;
private:
  static int osdLeft, osdTop, osdWidth, osdHeight;
  static cVector<cOsd *> Osds;
  static cMutex mutex;
  bool isTrueColor;
  cBitmap *savedBitmap;
  cBitmap *bitmaps[MAXOSDAREAS];
  int numBitmaps;
  cPixmapMemory *savedPixmap;
  cVector<cPixmap *> pixmaps;
  int left, top, width, height;
  uint level;
  bool active;
protected:
  cOsd(int Left, int Top, uint Level);
       ///< Initializes the OSD with the given coordinates.
       ///< By default it is assumed that the full area will be able to display
       ///< full 32 bit graphics (ARGB with eight bit for each color and the alpha
       ///< value, respectively). However, the actual hardware in use may not be
       ///< able to display such a high resolution OSD, so there is an option to
       ///< divide the full OSD area into several sub-areas with lower color depths
       ///< and individual palettes. The sub-areas need not necessarily cover the
       ///< entire OSD area, but only the OSD area actually covered by sub-areas
       ///< will be available for drawing.
       ///< At least one area must be defined in order to set the actual width and
       ///< height of the OSD. Also, the caller must first try to use an area that
       ///< consists of only one sub-area that covers the entire drawing space,
       ///< and should require only the minimum necessary color depth. This is
       ///< because a derived cOsd class may or may not be able to handle more
       ///< than one area.
       ///< There can be any number of cOsd objects at the same time, but only
       ///< one of them will be active at any given time. The active OSD is the
       ///< one with the lowest value of Level. If there are several cOsd objects
       ///< with the same Level, the one that was created first will be active.
  bool Active(void) { return active; }
  virtual void SetActive(bool On) { active = On; }
       ///< Sets this OSD to be the active one.
       ///< A derived class must call cOsd::SetActive(On).
  cPixmap *AddPixmap(cPixmap *Pixmap);
       ///< Adds the given Pixmap to the list of currently active pixmaps in this OSD.
       ///< Returns Pixmap if the operation was successful, or NULL if for some reason
       ///< the pixmap could not be added to the list.
       ///< A derived class that implements its own cPixmap class must call AddPixmap()
       ///< in order to add a newly created pixmap to the OSD's list of pixmaps.
  cPixmap *RenderPixmaps(void);
       ///< Renders the dirty part of all pixmaps into a resulting pixmap that
       ///< shall be displayed on the OSD. The returned pixmap's view port is
       ///< set to the location of the rectangle on the OSD that needs to be
       ///< refreshed; its draw port's origin is at (0, 0), and it has the same
       ///< size as the view port.
       ///< Only pixmaps with a non-negative layer value are rendered.
       ///< If there are several non-overlapping dirty rectangles from different pixmaps,
       ///< they are returned separately in order to avoid re-rendering large parts
       ///< of the OSD that haven't changed at all. The caller must therefore call
       ///< RenderPixmaps() repeatedly until it returns NULL, and display the returned
       ///< parts of the OSD at their appropriate locations. During this entire
       ///< operation the caller must hold a lock on the cPixmap mutex (for instance
       ///< by putting a LOCK_PIXMAPS into the scope of the operation).
       ///< If there are no dirty pixmaps, or if this is not a true color OSD,
       ///< this function returns NULL.
       ///< The caller must call DestroyPixmap() for the returned pixmap after use.
public:
  virtual ~cOsd();
       ///< Shuts down the OSD.
  static int OsdLeft(void) { return osdLeft ? osdLeft : Setup.OSDLeft; }
  static int OsdTop(void) { return osdTop ? osdTop : Setup.OSDTop; }
  static int OsdWidth(void) { return osdWidth ? osdWidth : Setup.OSDWidth; }
  static int OsdHeight(void) { return osdHeight ? osdHeight : Setup.OSDHeight; }
  static void SetOsdPosition(int Left, int Top, int Width, int Height);
       ///< Sets the position and size of the OSD to the given values.
       ///< This may be useful for plugins that determine the scaling of the
       ///< video image and need to scale the OSD accordingly to fit on the
       ///< screen.
  static int IsOpen(void) { return Osds.Size() && Osds[0]->level == OSD_LEVEL_DEFAULT; }
       ///< Returns true if there is currently a level 0 OSD open.
  bool IsTrueColor(void) const { return isTrueColor; }
       ///< Returns 'true' if this is a true color OSD (providing full 32 bit color
       ///< depth).
  int Left(void) { return left; }
  int Top(void) { return top; }
  int Width(void) { return width; }
  int Height(void) { return height; }
  void SetAntiAliasGranularity(uint FixedColors, uint BlendColors);
       ///< Allows the system to optimize utilization of the limited color
       ///< palette entries when generating blended colors for anti-aliasing.
       ///< FixedColors is the maximum number of colors used, and BlendColors
       ///< is the maximum number of foreground/background color combinations
       ///< used with anti-aliasing. If this function is not called with
       ///< useful values, the palette may be filled up with many shades of
       ///< a single color combination, and may not be able to serve all
       ///< requested colors. By default the palette assumes there will be
       ///< 10 fixed colors and 10 color combinations.
       ///< If this is a true color OSD, this function does nothing.
  cBitmap *GetBitmap(int Area);
       ///< Returns a pointer to the bitmap for the given Area, or NULL if no
       ///< such bitmap exists.
       ///< If this is a true color OSD, a pointer to a dummy bitmap with 8bpp
       ///< is returned. This is done so that skins that call this function
       ///< in order to preset the bitmap's palette won't crash.
       ///< Use of this function outside of derived classes is deprecated and it
       ///< may be made 'protected' in a future version.
  virtual cPixmap *CreatePixmap(int Layer, const cRect &ViewPort, const cRect &DrawPort = cRect::Null);
       ///< Creates a new true color pixmap on this OSD (see cPixmap for details).
       ///< The caller must not delete the returned object, it will be deleted when
       ///< the OSD is deleted. DestroyPixmap() can be called if a pixmap shall be
       ///< destroyed before the OSD is deleted.
       ///< If this is not a true color OSD, or if the pixmap could not be created
       ///< due to limited resources, this function returns NULL.
  virtual void DestroyPixmap(cPixmap *Pixmap);
       ///< Destroys the given Pixmap, which has previously been created by a call to
       ///< CreatePixmap(). When the OSD is deleted, all pixmaps are destroyed
       ///< automatically. So this function only needs to be used if a pixmap shall
       ///< be destroyed while the OSD is still being used.
  virtual void DrawImage(const cPoint &Point, const cImage &Image);
       ///< Draws the given Image on this OSD at the given Point.
       ///< If this is not a true color OSD, this function does nothing.
  virtual void DrawImage(const cPoint &Point, int ImageHandle);
       ///< Draws the image referenced by the given ImageHandle on this OSD at
       ///< the given Point. ImageHandle must be a value that has previously been
       ///< returned by a call to cOsdProvider::StoreImage(). If ImageHandle
       ///< has an invalid value, nothing happens.
       ///< If this is not a true color OSD, this function does nothing.
  virtual eOsdError CanHandleAreas(const tArea *Areas, int NumAreas);
       ///< Checks whether the OSD can display the given set of sub-areas.
       ///< The return value indicates whether a call to SetAreas() with this
       ///< set of areas will succeed. CanHandleAreas() may be called with an
       ///< OSD that is already in use with other areas and will not interfere
       ///< with the current operation of the OSD.
       ///< A derived class must first call the base class CanHandleAreas()
       ///< to check the basic conditions, like not overlapping etc.
  virtual eOsdError SetAreas(const tArea *Areas, int NumAreas);
       ///< Sets the sub-areas to the given areas.
       ///< The return value indicates whether the operation was successful.
       ///< If an error is reported, nothing will have changed and the previous
       ///< OSD (if any) will still be displayed as before.
       ///< If the OSD has been divided into several sub-areas, all areas that
       ///< are part of the rectangle that surrounds a given drawing operation
       ///< will be drawn into, with the proper offsets.
       ///< A new call overwrites any previous settings
       ///< To set up a true color OSD, exactly one area must be requested, with
       ///< its coordinates set to the full area the OSD shall cover, and the
       ///< bpp value set to 32.
  virtual void SaveRegion(int x1, int y1, int x2, int y2);
       ///< Saves the region defined by the given coordinates for later restoration
       ///< through RestoreRegion(). Only one saved region can be active at any
       ///< given time.
  virtual void RestoreRegion(void);
       ///< Restores the region previously saved by a call to SaveRegion().
       ///< If SaveRegion() has not been called before, nothing will happen.
  virtual eOsdError SetPalette(const cPalette &Palette, int Area);
       ///< Sets the Palette for the given Area (the first area is numbered 0).
       ///< If this is a true color OSD, nothing happens and oeOk is returned.
  virtual void DrawPixel(int x, int y, tColor Color);
       ///< Sets the pixel at the given coordinates to the given Color, which is
       ///< a full 32 bit ARGB value.
       ///< If the OSD area has been divided into separate sub-areas, and the
       ///< given coordinates don't fall into any of these sub-areas, no pixel will
       ///< be set.
  virtual void DrawBitmap(int x, int y, const cBitmap &Bitmap, tColor ColorFg = 0, tColor ColorBg = 0, bool ReplacePalette = false, bool Overlay = false);
       ///< Sets the pixels in the OSD with the data from the given
       ///< Bitmap, putting the upper left corner of the Bitmap at (x, y).
       ///< If ColorFg or ColorBg is given, the first palette entry of the Bitmap
       ///< will be mapped to ColorBg and the second palette entry will be mapped to
       ///< ColorFg (palette indexes are defined so that 0 is the background and
       ///< 1 is the foreground color). ReplacePalette controls whether the target
       ///< area shall have its palette replaced with the one from Bitmap.
       ///< If Overlay is true, any pixel in Bitmap that has color index 0 will
       ///< not overwrite the corresponding pixel in the target area.
       ///< If this is a true color OSD, ReplacePalette has no meaning.
  virtual void DrawScaledBitmap(int x, int y, const cBitmap &Bitmap, double FactorX, double FactorY, bool AntiAlias = false);
       ///< Sets the pixels in the OSD with the data from the given Bitmap, putting
       ///< the upper left corner of the Bitmap at (x, y) and scaled by the given
       ///< factors. If AntiAlias is true and either of the factors is greater than
       ///< 1.0, anti-aliasing is applied.
  virtual void DrawText(int x, int y, const char *s, tColor ColorFg, tColor ColorBg, const cFont *Font, int Width = 0, int Height = 0, int Alignment = taDefault);
       ///< Draws the given string at coordinates (x, y) with the given foreground
       ///< and background color and font. If Width and Height are given, the text
       ///< will be drawn into a rectangle with the given size and the given
       ///< Alignment (default is top-left). If ColorBg is clrTransparent, no
       ///< background pixels will be drawn, which allows drawing "transparent" text.
  virtual void DrawRectangle(int x1, int y1, int x2, int y2, tColor Color);
       ///< Draws a filled rectangle defined by the upper left (x1, y1) and lower right
       ///< (x2, y2) corners with the given Color.
  virtual void DrawEllipse(int x1, int y1, int x2, int y2, tColor Color, int Quadrants = 0);
       ///< Draws a filled ellipse defined by the upper left (x1, y1) and lower right
       ///< (x2, y2) corners with the given Color. Quadrants controls which parts of
       ///< the ellipse are actually drawn:
       ///< 0       draws the entire ellipse
       ///< 1..4    draws only the first, second, third or fourth quadrant, respectively
       ///< 5..8    draws the right, top, left or bottom half, respectively
       ///< -1..-4  draws the inverted part of the given quadrant
       ///< If Quadrants is not 0, the coordinates are those of the actual area, not
       ///< the full circle!
  virtual void DrawSlope(int x1, int y1, int x2, int y2, tColor Color, int Type);
       ///< Draws a "slope" into the rectangle defined by the upper left (x1, y1) and
       ///< lower right (x2, y2) corners with the given Color. Type controls the
       ///< direction of the slope and which side of it will be drawn:
       ///< 0: horizontal, rising,  lower
       ///< 1: horizontal, rising,  upper
       ///< 2: horizontal, falling, lower
       ///< 3: horizontal, falling, upper
       ///< 4: vertical,   rising,  lower
       ///< 5: vertical,   rising,  upper
       ///< 6: vertical,   falling, lower
       ///< 7: vertical,   falling, upper
  virtual void Flush(void);
       ///< Actually commits all data to the OSD hardware.
       ///< Flush() should return as soon as possible.
       ///< For a true color OSD using the default implementation with in memory
       ///< pixmaps, the Flush() function should basically do something like this:
       ///<
       ///<  LOCK_PIXMAPS;
       ///<  while (cPixmapMemory *pm = dynamic_cast<cPixmapMemory *>(RenderPixmaps())) {
       ///<        int w = pm->ViewPort().Width();
       ///<        int h = pm->ViewPort().Height();
       ///<        int d = w * sizeof(tColor);
       ///<        MyOsdDrawPixmap(Left() + pm->ViewPort().X(), Top() + pm->ViewPort().Y(), pm->Data(), w, h, h * d);
       ///<        DestroyPixmap(pm);
       ///<        }
       ///<
       ///< If a plugin uses a derived cPixmap implementation, it needs to use that
       ///< type instead of cPixmapMemory.
  };

#define MAXOSDIMAGES 64

class cOsdProvider {
  friend class cPixmapMemory;
private:
  static cOsdProvider *osdProvider;
  static int oldWidth;
  static int oldHeight;
  static double oldAspect;
  static cImage *images[MAXOSDIMAGES];
  static int osdState;
protected:
  virtual cOsd *CreateOsd(int Left, int Top, uint Level) = 0;
      ///< Returns a pointer to a newly created cOsd object, which will be located
      ///< at the given coordinates.
  virtual bool ProvidesTrueColor(void) { return false; }
      ///< Returns true if this OSD provider is able to handle a true color OSD.
  virtual int StoreImageData(const cImage &Image);
      ///< Copies the given Image and returns a handle for later reference.
      ///< A derived class can implement its own image storing mechanism by
      ///< reimplementing this function as well as DropImageData().
      ///< The base class implementation simply copies the image data to allow
      ///< plugins to always use this interface, no matter if the actual device
      ///< provides support for storing image data or not. The handles returned
      ///< by the default implementation are positive integers. A derived class
      ///< might want to use negative integers as handles, so that it can fall
      ///< back to using the base class image storing mechanism if, e.g.,  it runs
      ///< out of memory.
  virtual void DropImageData(int ImageHandle);
      ///< Drops the image data referenced by ImageHandle.
  static const cImage *GetImageData(int ImageHandle);
      ///< Gets the image data referenced by ImageHandle.
public:
  cOsdProvider(void);
      //XXX maybe parameter to make this one "sticky"??? (frame-buffer etc.)
  virtual ~cOsdProvider();
  static cOsd *NewOsd(int Left, int Top, uint Level = OSD_LEVEL_DEFAULT);
      ///< Returns a pointer to a newly created cOsd object, which will be located
      ///< at the given coordinates. When the cOsd object is no longer needed, the
      ///< caller must delete it. If the OSD is already in use, or there is no OSD
      ///< provider, a dummy OSD is returned so that the caller may always use the
      ///< returned pointer without having to check it every time it is accessed.
  static void UpdateOsdSize(bool Force = false);
      ///< Inquires the actual size of the video display and adjusts the OSD and
      ///< font sizes accordingly. If Force is true, all settings are recalculated,
      ///< even if the video resolution hasn't changed since the last call to
      ///< this function.
  static bool OsdSizeChanged(int &State);
      ///< Checks if the OSD size has changed and a currently displayed OSD needs to
      ///< be redrawn. An internal reference value is incremented on every size change
      ///< and is compared against State when calling the method.
      ///< OsdSizeChanged() can be called with an uninitialized State to just get
      ///< the current value of State.
  static bool SupportsTrueColor(void);
      ///< Returns true if the current OSD provider is able to handle a true color OSD.
  static int StoreImage(const cImage &Image);
      ///< Stores the given Image for later use with DrawImage() on an OSD or
      ///< pixmap. The returned number is a handle that must be used when
      ///< referencing this image in a call to DrawImage() or DropImage().
      ///< The image data is copied, so any later changes to Image will have
      ///< no effect on the stored image.
      ///< A derived class may be able to copy frequently used images to some
      ///< space where they can be retrieved faster than using a cImage in each call.
      ///< If this is not a true color OSD, or if the image data can't be stored for
      ///< any reason, this function returns 0 and nothing is stored.
  static void DropImage(int ImageHandle);
      ///< Drops the image referenced by the given ImageHandle. If ImageHandle
      ///< has an invalid value, nothing happens.
  static void Shutdown(void);
      ///< Shuts down the OSD provider facility by deleting the current OSD provider.
  };

class cTextScroller {
private:
  cOsd *osd;
  int left, top, width, height;
  const cFont *font;
  tColor colorFg, colorBg;
  int offset, shown;
  cTextWrapper textWrapper;
  void DrawText(void);
public:
  cTextScroller(void);
  cTextScroller(cOsd *Osd, int Left, int Top, int Width, int Height, const char *Text, const cFont *Font, tColor ColorFg, tColor ColorBg);
  void Set(cOsd *Osd, int Left, int Top, int Width, int Height, const char *Text, const cFont *Font, tColor ColorFg, tColor ColorBg);
  void Reset(void);
  int Left(void) { return left; }
  int Top(void) { return top; }
  int Width(void) { return width; }
  int Height(void) { return height; }
  int Total(void) { return textWrapper.Lines(); }
  int Offset(void) { return offset; }
  int Shown(void) { return shown; }
  bool CanScroll(void) { return CanScrollUp() || CanScrollDown(); }
  bool CanScrollUp(void) { return offset > 0; }
  bool CanScrollDown(void) { return offset + shown < Total(); }
  void Scroll(bool Up, bool Page);
  };

#endif //__OSD_H