This file is indexed.

/usr/include/blasr/algorithms/alignment/KBandAlign.hpp is in libblasr-dev 0~20151014+gitbe5d1bf-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
#ifndef _BLASR_K_BAND_ALIGN_HPP_
#define _BLASR_K_BAND_ALIGN_HPP_

#include <algorithm>
#include <vector>
#include <limits.h>
#include "defs.h"
#include "AlignmentUtils.hpp"
#include "NucConversion.hpp"
#include "matrix/FlatMatrix.hpp"
#include "datastructures/alignment/Alignment.hpp"
#include "statistics/StatUtils.hpp"

class DefaultGuide {
 public:
	DefaultGuide();
	int operator()(int i);
};

template<typename T_QuerySequence, typename T_TargetSequence, typename T_Alignment, typename T_ScoreFn>
int KBandAlign(T_QuerySequence &pqSeq, T_TargetSequence &ptSeq,
							 int matchMat[5][5], int ins, int del, DNALength k,
							 std::vector<int> &scoreMat,
							 std::vector<Arrow> & pathMat,
							 T_Alignment &alignment,
							 T_ScoreFn &scoreFn,
							 AlignmentType alignType=Global,
               bool samplePaths=false) {
	return KBandAlign(pqSeq, ptSeq, matchMat, ins, del, k, scoreMat, pathMat, alignment, alignType, scoreFn, samplePaths);
}

void SetKBoundedLengths(DNALength tLength, DNALength qLength, DNALength k, DNALength &tLen, DNALength &qLen);

template<typename T_Sequence>
void CreateThreeBitSequence(T_Sequence &origSeq, T_Sequence &threeBitSeq) {
	//
	// Make a copy of the sequences that is guaranteed to be in 3-bit format.
	// This is 2 bits for A,C,T,and G, and an extra bit to signal masked sequence.
	//

	ResizeSequence(threeBitSeq, origSeq.length);
	
	VectorIndex i;
	for (i = 0; i < origSeq.length; i++ ) {
		threeBitSeq.seq[i] = ThreeBit[origSeq.seq[i]];
	}
}


template<typename T_QuerySequence, typename T_TargetSequence, typename T_Alignment, typename T_ScoreFn>
int KBandAlign(T_QuerySequence &qSeq, T_TargetSequence &tSeq,
							 int matchMat[5][5], int ins, int del, int k,
							 std::vector<int>   &scoreMat,
							 std::vector<Arrow> &pathMat,
							 T_Alignment   &alignment, 
							 AlignmentType alignType, 
							 T_ScoreFn &scoreFn, bool samplePaths=false) {

	DNALength qLen, tLen;	
	SetKBoundedLengths(tSeq.length, qSeq.length, k, tLen, qLen);

	//
	//
	// Allow for length up to diaonal + k + 1 for boundary.
	// 
	// Allow for width:
	//   diagonal (1)
	//   up to k insertions (k)
	//   up to k deletions  (k)
	//   boundary on left side of matrix (1)
	// 
  DNALength nCols = 2*k + 1;
	DNALength totalMatSize = (qLen + 1) * nCols;
	alignment.nCells = totalMatSize;
	if (scoreMat.size() < totalMatSize) {
		scoreMat.resize(totalMatSize);
		pathMat.resize(totalMatSize);
	}

	// 
	// Initialze matrices
	//
	std::fill(scoreMat.begin(), scoreMat.begin() + totalMatSize, 0);
	std::fill(pathMat.begin(),  pathMat.begin()  + totalMatSize, NoArrow);
	
	//
	// Initialize the boundaries of the score and path matrices.
	//
	int q, t;

	for (q = 1; q <= k && q < qLen + 1; q++) {
		scoreMat[rc2index(q, k - q, nCols)] = q * ins;
		pathMat[rc2index(q, k - q , nCols)] = Up;
	}
	if (alignType == Global) {
		for (t = 1; t <= k && t < tLen; t++) {
			scoreMat[rc2index(0, t + k , nCols)] = t * del;
			pathMat[rc2index(0, t + k , nCols)] = Left;
		}
	}
	if (alignType == QueryFit or alignType == Fit) {
		for (t = 1; t <= k & t < tLen; t++) {
			scoreMat[rc2index(0, t + k , nCols)] = 0;
			pathMat[rc2index(0, t + k , nCols)] = Left;
		}
	}
	if (alignType == TargetFit or alignType == Fit) {
		for (q = 1; q <= k & q < qLen; q++) {
			scoreMat[rc2index(q, 0, nCols)] = 0;
			pathMat[rc2index(q, 0, nCols)] = Up;
		}
	}

	//
	// Initialize the 0,0 position to be a match.
	//
	scoreMat[rc2index(0, k, nCols)] = 0;
	pathMat[rc2index(0, k, nCols)] = Diagonal;

	int matchScore, insScore, delScore;

	for (q = 1; q <= qLen; q++) {
		for (t = q - k; t < q + k + 1; t++) {
			if (t < 1)
				continue;
			if (t > tLen)
				continue;

			// On left boundary of k-band. 
			// do not allow deletions of t.
			if (t == q - k) {
				delScore = INF_INT;
			}
			else {
				// cur row = q
				// cur col = t - q 
				// prev col therefore t - q - 1
				// and offset from diagonal is k + t - q - 1
				delScore = scoreMat[rc2index(q, k + t - q - 1, nCols)] + scoreFn.Deletion(tSeq, (DNALength) t-1, qSeq, (DNALength)q-1);
			}

			// cur row = q
			// cur col = t - q
			
			// cur query index = q - 1
			// cur target index = t - 1
			// therefore match row (up) = q 
			//           match col (left, but since up shifted right) = t - q
			assert(rc2index(q - 1, k + t - q, nCols) < scoreMat.size());
			assert(t-1 >= 0);
			assert(q-1 >= 0);
			int  tmpMatchScore = scoreFn.Match(tSeq, t-1, qSeq, q-1);
			matchScore = scoreMat[rc2index(q - 1, k + t - q, nCols)] + tmpMatchScore;

			//
			//  Possibly on right boundary of k-band, in which
			//  case do not allow insertions from q.
			if (t == q + k ) {
				insScore = INF_INT;
			}
			else {
				// cur row = q
				// cur col = t - q
				// therefore insertion col = t - q + 1
				insScore = scoreMat[rc2index(q-1, k + t - q+1, nCols)] + scoreFn.Insertion(tSeq, (DNALength) t-1, qSeq, q-1);
			}
		
			int minScore = MIN(matchScore, MIN(insScore, delScore));
			int curIndex = rc2index(q, k + t - q, nCols);
			assert(curIndex < scoreMat.size());
			scoreMat[curIndex] = minScore;
      int nEqual = 0;
      (matchScore == minScore ? nEqual++ : nEqual );
      (insScore == minScore ? nEqual++ : nEqual );
      (delScore == minScore ? nEqual++ : nEqual );
      if (samplePaths == false or nEqual == 1) {
        if (minScore == matchScore) {
          pathMat[curIndex] = Diagonal;
        }
        else if (minScore == delScore) {
          pathMat[curIndex] = Left;
        }
        else {
          pathMat[curIndex] = Up;
        }
      }
      else {
        //
        // When there are paths of equal score reaching 
        //
        if (nEqual == 3) {
          int v = RandomInt(3);
          if (v == 0) { pathMat[curIndex] = Diagonal; }
          else if (v == 1) { pathMat[curIndex] = Left; }
          else if (v == 2) { pathMat[curIndex] = Up; }
        }
        else {
          assert(nEqual == 2);
          int v = RandomInt(2);
          if (matchScore == insScore) {
            if (v == 0) { pathMat[curIndex] = Diagonal; } else { pathMat[curIndex] = Up; }
          }
          else if (matchScore == delScore) {
            if (v == 0) { pathMat[curIndex] = Diagonal; } else { pathMat[curIndex] = Left; }
          }
          else if (delScore == insScore) {
            if (v == 0) { pathMat[curIndex] = Left; } else { pathMat[curIndex] = Up; }
          }
          else {
            std::cout << "ERROR, counted two values equal to the minimum but cannot find them." << std::endl;
            assert(0);
          }
        }
        alignment.nSampledPaths++;
      }
		}
	}

	//
	// Now create the alignment.
	//
	
	q = qLen ;
	t = k - (qLen - tLen);

	int globalMinScore;
	int minLastColScoreIndex, minLastRowScoreIndex;
	globalMinScore = scoreMat[rc2index(q,t,nCols)];
	int minLastColScore = globalMinScore, minLastRowScore = globalMinScore;

	if (alignType == QueryFit or alignType == Fit) {
		int q2,t2;
		q2 = qLen;
		t2 = k - (qLen - tLen);
		UInt qi, qend;
		bool minScoreSet = false;
		int minScoreIndex;
		for (t2 = q - k; t2 < q2 + k + 1; t2++) {
			if (t2 < 1)
				continue;
			if (t2 > tLen)
				continue;
      //      std::cout << t2 << " " << tLen << " " << " " << scoreMat[rc2index(q2, k+t2-q,nCols)] << " " << minLastRowScore <<std::endl;
			if (minScoreSet == false or scoreMat[rc2index(q2, k+t2-q,nCols)] < minLastRowScore){ 
				minScoreSet     = true;
				minLastRowScore = scoreMat[rc2index(q2,k+t2-q,nCols)];
				minLastRowScoreIndex   = t2;
			}
		}
		if (minScoreSet) {
      t2 = k - (q - minLastRowScoreIndex);
			t = t2; 
			q = q2;
		}
	}
	if (alignType == TargetFit or alignType == Fit) {
		//  Fit the target inside the query wh
		int q2,t2;
		q2 = qLen;
		t2 = k - (qLen - tLen);
		bool minScoreSet = false;
		for (q2 = qLen; q2 >= tLen - k and q2 > 0; q2--) {
			int index = rc2index(q2, k+tLen-q2, nCols);
			if (minScoreSet == false or scoreMat[index] < minLastColScore) {
				minLastColScore = scoreMat[index];
				minScoreSet = true;
				minLastColScoreIndex = q2;
			}
		}
		if (alignType == Fit) {
			if (minLastColScore < minLastRowScore) {
				t = t2;
				q = minLastColScoreIndex;
			}
		}
		else if (alignType == TargetFit) {
			t = t2;
			q = minLastColScoreIndex;
		}
	}

	std::vector<Arrow>  optAlignment;
	int optScore = scoreMat[rc2index(q, t, nCols)];
	Arrow arrow;
	/*
	PrintFlatMatrix(&pathMat[0], qLen + 1, nCols, debugOut);
	std::cout << std::endl;
  ofstream debugOut;
  stringstream debugOutName;
  debugOutName << "kband_" << kbandcounter << ".table";
  debugOut.open(debugOutName.str().c_str());
	PrintFlatMatrix(&scoreMat[0], qLen + 1, nCols, debugOut);
  kbandcounter++;
  */
  /*
	std::cout << std::endl;
	*/
	//
	// Use some logic to deal with unsigned types.  When t > k, t must
	// also be greater than 0, so it's not worth checking to see if it
	// hits a boundary.
	//
	if (alignType == Global or alignType == QueryFit) {
		while (q > 0 and (t < k ? (k - t != q) : true)) {
			arrow = pathMat[rc2index(q,t, nCols)];
			if (arrow == NoArrow) {
				break;
			}
			optAlignment.push_back(arrow);
			if (arrow == Diagonal) {
				q--;
			}
			else if (arrow == Up) {
				q--;
				t++;
			}
			else if (arrow == Left) {
				t--;
			}
		}
	}
	else if (alignType == Fit) {
		while (q > 0 and (t < k ? (k - t != q) : true)  and  ( q <= k ? k - q != t : true) ) {
			arrow = pathMat[rc2index(q,t, nCols)];
			if (arrow == NoArrow) {
				break;
			}
			optAlignment.push_back(arrow);
			if (arrow == Diagonal) {
				q--;
			}
			else if (arrow == Up) {
				q--;
				t++;
			}
			else if (arrow == Left) {
				t--;
			}
		}
	}
	else if (alignType == TargetFit) {
		while (q > 0 and ( q < k ? k - q != t : true) ) {
			arrow = pathMat[rc2index(q,t, nCols)];
			if (arrow == NoArrow) {
				break;
			}
			optAlignment.push_back(arrow);
			if (arrow == Diagonal) {
				q--;
			}
			else if (arrow == Up) {
				q--;
				t++;
			}
			else if (arrow == Left) {
				t--;
			}
		}
	}

	// remove the boundary condition.
	//optAlignment.pop_back();
	//	qSeq.Free();
	//	tSeq.Free();
	alignment.qPos = q;
	
	//
	// Use a little extra logic to deal with the unsignedness of indices.
	//
	if (t < k) {
		alignment.tPos = (k - t) - q;
	}
	else {
		alignment.tPos = (t - k) - q;
	}
	std::reverse(optAlignment.begin(), optAlignment.end());
	alignment.ArrowPathToAlignment(optAlignment);
	return optScore;
}

#endif // _BLASR_K_BAND_ALIGN_HPP_