This file is indexed.

/usr/include/blasr/algorithms/anchoring/MapBySuffixArrayImpl.hpp is in libblasr-dev 0~20151014+gitbe5d1bf-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#ifndef _BLASR_MAP_BY_SUFFIX_ARRAY_IMPL_HPP_
#define _BLASR_MAP_BY_SUFFIX_ARRAY_IMPL_HPP_
#include "defs.h" 
#include "algorithms/anchoring/MapBySuffixArray.hpp"

/*
 * Parameters:
 * Eventually this should be strongly typed, since this is specific to
 * suffix array searching on DNASequence read/genome types.
 * reference  - should be of type DNASequence
 * sa         - shuld be of type SuffixArray
 * read       - may be of any DNASequence subclass.
 * tupleSize  - The length of the keyword used to speed up searching.
 * Out:
 *   matchLow - The starting point in the suffix array for the LCP
 *              match for the read at pos p.
 *   matchHigh -The same array but for the upper bound.
 *   saMatchLength - The length of the lcp.
 */
template<typename T_SuffixArray, 
         typename T_RefSequence, 
         typename T_Sequence>
int LocateAnchorBoundsInSuffixArray(T_RefSequence &reference,
	T_SuffixArray &sa, T_Sequence &read, unsigned int minPrefixMatchLength,
	std::vector<DNALength> &matchLow, std::vector<DNALength> &matchHigh,
	std::vector<DNALength> &matchLength, AnchorParameters &params) {

    //
    // Make sure there is enough of this read to map.  Since searches
    // are keyed off of 'minPrefixMatchLength' matches, don't search
    // anything shorter than that.
    //
    if (minPrefixMatchLength > 0 and 
        read.SubreadLength() < minPrefixMatchLength) {
        return 0;
    }

    DNALength p, m;
    DNALength alignEnd;
    DNALength matchEnd = read.SubreadEnd() - minPrefixMatchLength + 1;
    DNALength numSearchedPositions = matchEnd - read.SubreadStart();

    matchLength.resize(numSearchedPositions);
    matchLow.resize(numSearchedPositions);
    matchHigh.resize(numSearchedPositions);

    std::fill(matchLength.begin(), matchLength.end(), 0);
    std::fill(matchLow.begin(), matchLow.end(), 0);
    std::fill(matchHigh.begin(), matchHigh.end(), 0);
    vector<SAIndex> lowMatchBound, highMatchBound;	

    for (m = 0, p = read.SubreadStart(); p < matchEnd; p++, m++) {
        DNALength lcpLow, lcpHigh, lcpLength;
        lowMatchBound.clear(); highMatchBound.clear();
        lcpLow = 0;
        lcpHigh = 0;
        lcpLength = sa.StoreLCPBounds(reference.seq, reference.length, 
            &read.seq[p], matchEnd - p,
            params.useLookupTable,
            params.maxLCPLength,
            //
            // Store the positions in the SA
            // that are searched.
            //
            lowMatchBound, highMatchBound, 
            params.stopMappingOnceUnique);

        //
        // Possibly print the lcp bounds for debugging
        //
        if (params.lcpBoundsOutPtr != NULL) {
            for (int i = 0; i < lowMatchBound.size(); i++) {
                *params.lcpBoundsOutPtr << 
                    (highMatchBound[i] - lowMatchBound[i]);
                if (i < lowMatchBound.size() - 1) {
                    *params.lcpBoundsOutPtr << " ";
                }  
            }
            *params.lcpBoundsOutPtr << endl;
        }

        //
        // Default to no match.
        //
        matchLow[m] = matchHigh[m] = matchLength[m] = 0;

        //
        // If anything was found in the suffix array:
        //
        if (lowMatchBound.size() > 0) {
            //
            // First expand the search bounds until at least
            // one match is found.
            //
            int lcpSearchLength = lowMatchBound.size();
            bool extendedForward = false;
            while (lcpSearchLength > 0 and 
                    lowMatchBound[lcpSearchLength - 1] == 
                    highMatchBound[lcpSearchLength - 1]) {
                lcpSearchLength--;
                lcpLength--;
            }
            matchLow[m]  = lowMatchBound[lcpSearchLength - 1];
            matchHigh[m] = highMatchBound[lcpSearchLength - 1];
            matchLength[m] = minPrefixMatchLength + lcpSearchLength;

            //
            // Next, apply some heuristics to the anchor generation.
            //
            // 1.1 If the suffix array match is unique, try and extend that
            // match as long as possible to ease global chaining later on.  
            //
            // 1.2 If the suffix array match is unique, but cannot be
            // extended, it probably ends in an error.  Back the search up
            // by 1.
            //
            // 2.1 If the suffix array match is not unique, return the
            // default matches, or expand the search to include more
            // matches. 
            //

            //
            // Check to see if the match was unique.
            //
            if (matchLow[m] + 1 == matchHigh[m]) {
                //
                // If the match is unique, extend for as long as possible.
                //
                lcpLength = minPrefixMatchLength + lcpSearchLength;
                long refPos    = sa.index[matchLow[m]] + lcpLength;
                long queryPos  = p + lcpLength;
                bool extensionWasPossible = false;

                while (refPos + 1 < reference.length and
                       queryPos + 1 < read.length and
                       reference.seq[refPos + 1] == read.seq[queryPos + 1] and 
                       (params.maxLCPLength == 0 or 
                        lcpLength < params.maxLCPLength)) {
                    refPos++;
                    queryPos++;
                    lcpLength++;
                    extensionWasPossible = true;
                }

                if (extensionWasPossible) {
                    //
                    // Was able to extend match far into the genome, store that.
                    //
                    matchLength[m] = lcpLength;
                }
                else if (extensionWasPossible == false) {
                    //
                    // No extension was possible, indicating that this match
                    // ends at an error.  To be safe, expand search by up to
                    // 1.
                    //
                    if (lcpSearchLength > 1) {
                        lcpSearchLength = lcpSearchLength - 1;
                    }
                    matchLow[m]  = lowMatchBound[lcpSearchLength-1];
                    matchHigh[m] = highMatchBound[lcpSearchLength-1];
                    matchLength[m] = minPrefixMatchLength + lcpSearchLength;
                }
            }
            else {
                //
                // The match is not unique.  Store a possibly expanded search.
                // 
                int numBacktrack = params.expand;
                if (lcpSearchLength > params.expand) {
                    lcpSearchLength -= params.expand;
                }
                else {
                    assert(lowMatchBound.size() > 0);
                    lcpSearchLength = 1;
                }

                //
                // There are multiple matches for this position.
                //
                matchLow[m]    = lowMatchBound[lcpSearchLength - 1];
                matchHigh[m]   = highMatchBound[lcpSearchLength - 1];
                matchLength[m] = minPrefixMatchLength + lcpSearchLength;
            }
        }
        else {
            //
            // The match is shorter than what the search is supposed to
            // expand to.  In order to avoid expanding to before the end
            // of the match list, do not set any match.
            //
            matchLow[m]    = 0;
            matchHigh[m]   = 0;
            matchLength[m] = 0;
        }

        //
        // Possibly advance a bunch of steps.
        //
        if (params.advanceExactMatches) {
            int tmp = (int)lcpLength - (int)params.expand
                      - params.advanceExactMatches;
            int advance = MAX(tmp, 0);
            p += advance;
            m += advance;
        }
    }
    return 1;
}


template<typename T_SuffixArray, 
         typename T_RefSequence, 
         typename T_Sequence, 
         typename T_MatchPos>
int MapReadToGenome(T_RefSequence &reference,
    T_SuffixArray &sa, T_Sequence &read, 
    unsigned int minPrefixMatchLength,
    vector<T_MatchPos> &matchPosList,
    AnchorParameters &anchorParameters) {

    vector<DNALength> matchLow, matchHigh, matchLength;

    int minMatchLen = anchorParameters.minMatchLength;
    if (read.SubreadLength() < minMatchLen) {
        matchPosList.clear();
        return 0;
    }

    LocateAnchorBoundsInSuffixArray(reference, sa, read, 
        minPrefixMatchLength, matchLow, matchHigh, matchLength,
        anchorParameters);

    //
    // Try evaluating some contexts.
    //
    DNALength pos;
    DNALength mappedLength = matchLow.size();
    assert(matchLow.size() == matchHigh.size());

    DNASequence evalQrySeq, evalRefSeq;
    vector<Arrow> pathMat;
    vector<int> scoreMat;
    Alignment alignment;

    //
    // Do some filtering on the matches looking for overlapping matches
    // if there are any.
    //
    if (anchorParameters.removeEncompassedMatches) {
        vector<bool> removed;
        removed.resize(read.length);
        std::fill(removed.begin(), removed.end(), false);
        int i;
        int nRemoved = 0;
        for (i = 0; i < read.length-1; i++) {
            if (matchLength[i] == matchLength[i+1]+1) {
                removed[i+1] = true;
            }
        }
        for (i = 1; i < matchLength.size(); i++) {
            if (removed[i]) {
                matchLength[i] = matchLow[i] = matchHigh[i] = 0;
            }
        }
    }
    //
    // Now add 
    // 
    DNALength endOfMapping;
    DNALength trim = MAX(minMatchLen + 1, sa.lookupPrefixLength + 1);
    if (read.SubreadEnd() < trim) {
        endOfMapping = 0;
    }
    else {
        endOfMapping = read.SubreadEnd() - trim;
    }

    for (pos = read.SubreadStart(); pos < endOfMapping; pos++) {
        int matchIndex = pos - read.SubreadStart();
        assert(matchIndex < matchHigh.size());
        if (matchHigh[matchIndex] - matchLow[matchIndex] <= 
            anchorParameters.maxAnchorsPerPosition) {
            DNALength mp;
            for (mp = matchLow[matchIndex]; mp < matchHigh[matchIndex]; mp++) {
                if (matchLength[matchIndex] < minMatchLen) {
                    continue;
                }

                //
                // By default, add all anchors.
                //
                if (matchLength[matchIndex] + pos > read.length) {
                    //
                    // When doing branching, it's possible that a deletion
                    // branch finds an anchor that goes past the end of a
                    // read.  When that is the case, trim back the anchor
                    // match since this confuses downstream assertions.
                    //
                    matchLength[matchIndex] = read.length - pos;
                }
                assert(sa.index[mp] + matchLength[matchIndex] 
                    <= reference.length);

                matchPosList.push_back(ChainedMatchPos(sa.index[mp], pos,
                    matchLength[matchIndex], 
                    matchHigh[matchIndex] - matchLow[matchIndex]));
            }
        }
    }

    return matchPosList.size();
}		

#endif