/usr/include/ceres/autodiff_cost_function.h is in libceres-dev 1.11.0~dfsg0-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 | // Ceres Solver - A fast non-linear least squares minimizer
// Copyright 2015 Google Inc. All rights reserved.
// http://ceres-solver.org/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Google Inc. nor the names of its contributors may be
// used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Author: sameeragarwal@google.com (Sameer Agarwal)
//
// Create CostFunctions as needed by the least squares framework, with
// Jacobians computed via automatic differentiation. For more
// information on automatic differentation, see the wikipedia article
// at http://en.wikipedia.org/wiki/Automatic_differentiation
//
// To get an auto differentiated cost function, you must define a class with a
// templated operator() (a functor) that computes the cost function in terms of
// the template parameter T. The autodiff framework substitutes appropriate
// "jet" objects for T in order to compute the derivative when necessary, but
// this is hidden, and you should write the function as if T were a scalar type
// (e.g. a double-precision floating point number).
//
// The function must write the computed value in the last argument
// (the only non-const one) and return true to indicate
// success. Please see cost_function.h for details on how the return
// value maybe used to impose simple constraints on the parameter
// block.
//
// For example, consider a scalar error e = k - x'y, where both x and y are
// two-dimensional column vector parameters, the prime sign indicates
// transposition, and k is a constant. The form of this error, which is the
// difference between a constant and an expression, is a common pattern in least
// squares problems. For example, the value x'y might be the model expectation
// for a series of measurements, where there is an instance of the cost function
// for each measurement k.
//
// The actual cost added to the total problem is e^2, or (k - x'k)^2; however,
// the squaring is implicitly done by the optimization framework.
//
// To write an auto-differentiable cost function for the above model, first
// define the object
//
// class MyScalarCostFunctor {
// MyScalarCostFunctor(double k): k_(k) {}
//
// template <typename T>
// bool operator()(const T* const x , const T* const y, T* e) const {
// e[0] = T(k_) - x[0] * y[0] + x[1] * y[1];
// return true;
// }
//
// private:
// double k_;
// };
//
// Note that in the declaration of operator() the input parameters x and y come
// first, and are passed as const pointers to arrays of T. If there were three
// input parameters, then the third input parameter would come after y. The
// output is always the last parameter, and is also a pointer to an array. In
// the example above, e is a scalar, so only e[0] is set.
//
// Then given this class definition, the auto differentiated cost function for
// it can be constructed as follows.
//
// CostFunction* cost_function
// = new AutoDiffCostFunction<MyScalarCostFunctor, 1, 2, 2>(
// new MyScalarCostFunctor(1.0)); ^ ^ ^
// | | |
// Dimension of residual -----+ | |
// Dimension of x ---------------+ |
// Dimension of y ------------------+
//
// In this example, there is usually an instance for each measumerent of k.
//
// In the instantiation above, the template parameters following
// "MyScalarCostFunctor", "1, 2, 2", describe the functor as computing a
// 1-dimensional output from two arguments, both 2-dimensional.
//
// AutoDiffCostFunction also supports cost functions with a
// runtime-determined number of residuals. For example:
//
// CostFunction* cost_function
// = new AutoDiffCostFunction<MyScalarCostFunctor, DYNAMIC, 2, 2>(
// new CostFunctorWithDynamicNumResiduals(1.0), ^ ^ ^
// runtime_number_of_residuals); <----+ | | |
// | | | |
// | | | |
// Actual number of residuals ------+ | | |
// Indicate dynamic number of residuals --------+ | |
// Dimension of x ------------------------------------+ |
// Dimension of y ---------------------------------------+
//
// The framework can currently accommodate cost functions of up to 10
// independent variables, and there is no limit on the dimensionality
// of each of them.
//
// WARNING #1: Since the functor will get instantiated with different types for
// T, you must to convert from other numeric types to T before mixing
// computations with other variables of type T. In the example above, this is
// seen where instead of using k_ directly, k_ is wrapped with T(k_).
//
// WARNING #2: A common beginner's error when first using autodiff cost
// functions is to get the sizing wrong. In particular, there is a tendency to
// set the template parameters to (dimension of residual, number of parameters)
// instead of passing a dimension parameter for *every parameter*. In the
// example above, that would be <MyScalarCostFunctor, 1, 2>, which is missing
// the last '2' argument. Please be careful when setting the size parameters.
#ifndef CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
#define CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
#include "ceres/internal/autodiff.h"
#include "ceres/internal/scoped_ptr.h"
#include "ceres/sized_cost_function.h"
#include "ceres/types.h"
#include "glog/logging.h"
namespace ceres {
// A cost function which computes the derivative of the cost with respect to
// the parameters (a.k.a. the jacobian) using an autodifferentiation framework.
// The first template argument is the functor object, described in the header
// comment. The second argument is the dimension of the residual (or
// ceres::DYNAMIC to indicate it will be set at runtime), and subsequent
// arguments describe the size of the Nth parameter, one per parameter.
//
// The constructors take ownership of the cost functor.
//
// If the number of residuals (argument kNumResiduals below) is
// ceres::DYNAMIC, then the two-argument constructor must be used. The
// second constructor takes a number of residuals (in addition to the
// templated number of residuals). This allows for varying the number
// of residuals for a single autodiff cost function at runtime.
template <typename CostFunctor,
int kNumResiduals, // Number of residuals, or ceres::DYNAMIC.
int N0, // Number of parameters in block 0.
int N1 = 0, // Number of parameters in block 1.
int N2 = 0, // Number of parameters in block 2.
int N3 = 0, // Number of parameters in block 3.
int N4 = 0, // Number of parameters in block 4.
int N5 = 0, // Number of parameters in block 5.
int N6 = 0, // Number of parameters in block 6.
int N7 = 0, // Number of parameters in block 7.
int N8 = 0, // Number of parameters in block 8.
int N9 = 0> // Number of parameters in block 9.
class AutoDiffCostFunction : public SizedCostFunction<kNumResiduals,
N0, N1, N2, N3, N4,
N5, N6, N7, N8, N9> {
public:
// Takes ownership of functor. Uses the template-provided value for the
// number of residuals ("kNumResiduals").
explicit AutoDiffCostFunction(CostFunctor* functor)
: functor_(functor) {
CHECK_NE(kNumResiduals, DYNAMIC)
<< "Can't run the fixed-size constructor if the "
<< "number of residuals is set to ceres::DYNAMIC.";
}
// Takes ownership of functor. Ignores the template-provided
// kNumResiduals in favor of the "num_residuals" argument provided.
//
// This allows for having autodiff cost functions which return varying
// numbers of residuals at runtime.
AutoDiffCostFunction(CostFunctor* functor, int num_residuals)
: functor_(functor) {
CHECK_EQ(kNumResiduals, DYNAMIC)
<< "Can't run the dynamic-size constructor if the "
<< "number of residuals is not ceres::DYNAMIC.";
SizedCostFunction<kNumResiduals,
N0, N1, N2, N3, N4,
N5, N6, N7, N8, N9>
::set_num_residuals(num_residuals);
}
virtual ~AutoDiffCostFunction() {}
// Implementation details follow; clients of the autodiff cost function should
// not have to examine below here.
//
// To handle varardic cost functions, some template magic is needed. It's
// mostly hidden inside autodiff.h.
virtual bool Evaluate(double const* const* parameters,
double* residuals,
double** jacobians) const {
if (!jacobians) {
return internal::VariadicEvaluate<
CostFunctor, double, N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>
::Call(*functor_, parameters, residuals);
}
return internal::AutoDiff<CostFunctor, double,
N0, N1, N2, N3, N4, N5, N6, N7, N8, N9>::Differentiate(
*functor_,
parameters,
SizedCostFunction<kNumResiduals,
N0, N1, N2, N3, N4,
N5, N6, N7, N8, N9>::num_residuals(),
residuals,
jacobians);
}
private:
internal::scoped_ptr<CostFunctor> functor_;
};
} // namespace ceres
#endif // CERES_PUBLIC_AUTODIFF_COST_FUNCTION_H_
|