This file is indexed.

/usr/include/deal.II/base/function_lib.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
// ---------------------------------------------------------------------
// $Id: function_lib.h 30036 2013-07-18 16:55:32Z maier $
//
// Copyright (C) 1999 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__function_lib_h
#define __deal2__function_lib_h


#include <deal.II/base/config.h>
#include <deal.II/base/function.h>
#include <deal.II/base/point.h>

DEAL_II_NAMESPACE_OPEN

/**
 * Namespace implementing some concrete classes derived from the
 * Function class that describe actual functions. This is rather
 * a collection of classes that we have needed for our own programs
 * once and thought might be useful to others as well at some
 * point.
 *
 * @ingroup functions
 */
namespace Functions
{


  /**
   * The distance to the origin squared.
   *
   * This function returns the square norm of the radius vector of a point.
   *
   * Together with the function, its derivatives and Laplacian are defined.
   *
   * @ingroup functions
   * @author: Guido Kanschat, 1999
   */
  template<int dim>
  class SquareFunction : public Function<dim>
  {
  public:
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;
    virtual void vector_value (const Point<dim>   &p,
                               Vector<double>     &values) const;
    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;
    virtual void vector_gradient (const Point<dim>   &p,
                                  std::vector<Tensor<1,dim> >    &gradient) const;
    virtual void gradient_list (const std::vector<Point<dim> > &points,
                                std::vector<Tensor<1,dim> >    &gradients,
                                const unsigned int              component = 0) const;
    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;
    virtual void laplacian_list (const std::vector<Point<dim> > &points,
                                 std::vector<double>            &values,
                                 const unsigned int              component = 0) const;
  };



  /**
   * The function <tt>xy</tt> in 2d and 3d, not implemented in 1d.
   * This function serves as an example for
   * a vanishing Laplacian.
   *
   * @ingroup functions
   * @author: Guido Kanschat, 2000
   */
  template<int dim>
  class Q1WedgeFunction : public Function<dim>
  {
  public:
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                    std::vector<Vector<double> > &values) const;

    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int       component = 0) const;

    virtual void gradient_list (const std::vector<Point<dim> > &points,
                                std::vector<Tensor<1,dim> >    &gradients,
                                const unsigned int              component = 0) const;

    virtual void vector_gradient_list (const std::vector<Point<dim> > &,
                                       std::vector<std::vector<Tensor<1,dim> > > &) const;

    /**
     * Laplacian of the function at one point.
     */
    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;

    /**
     * Laplacian of the function at multiple points.
     */
    virtual void laplacian_list (const std::vector<Point<dim> > &points,
                                 std::vector<double>            &values,
                                 const unsigned int              component = 0) const;
  };



  /**
   * d-quadratic pillow on the unit hypercube.
   *
   * This is a function for testing the implementation. It has zero Dirichlet
   * boundary values on the domain $(-1,1)^d$. In the inside, it is the
   * product of $1-x_i^2$ over all space dimensions.
   *
   * Providing a non-zero argument to the constructor, the whole function
   * can be offset by a constant.
   *
   * Together with the function, its derivatives and Laplacian are defined.
   *
   * @ingroup functions
   * @author: Guido Kanschat, 1999
   */
  template<int dim>
  class PillowFunction : public Function<dim>
  {
  public:
    /**
     * Constructor. Provide a
     * constant that will be added to
     * each function value.
     */
    PillowFunction (const double offset=0.);

    /**
     * The value at a single point.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Values at multiple points.
     */
    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    /**
     * Gradient at a single point.
     */
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

    /**
     * Gradients at multiple points.
     */
    virtual void gradient_list (const std::vector<Point<dim> > &points,
                                std::vector<Tensor<1,dim> >    &gradients,
                                const unsigned int              component = 0) const;

    /**
     * Laplacian at a single point.
     */
    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;

    /**
     * Laplacian at multiple points.
     */
    virtual void laplacian_list (const std::vector<Point<dim> > &points,
                                 std::vector<double>            &values,
                                 const unsigned int              component = 0) const;
  private:
    const double offset;
  };



  /**
   * Cosine-shaped pillow function.
   * This is another function with zero boundary values on $[-1,1]^d$. In the interior
   * it is the product of $\cos(\pi/2 x_i)$.
   *
   * @ingroup functions
   * @author Guido Kanschat, 1999
   */
  template<int dim>
  class CosineFunction : public Function<dim>
  {
  public:
    /**
     * Constructor which allows to
     * optionally generate a vector
     * valued cosine function with
     * the same value in each
     * component.
     */
    CosineFunction (const unsigned int n_components = 1);

    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                    std::vector<Vector<double> > &values) const;

    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

    virtual void gradient_list (const std::vector<Point<dim> > &points,
                                std::vector<Tensor<1,dim> >    &gradients,
                                const unsigned int              component = 0) const;

    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;

    virtual void laplacian_list (const std::vector<Point<dim> > &points,
                                 std::vector<double>            &values,
                                 const unsigned int              component = 0) const;

    /**
     * Second derivatives at a
     * single point.
     */
    virtual Tensor<2,dim> hessian (const Point<dim>   &p,
                                   const unsigned int  component = 0) const;

    /**
     * Second derivatives at
     * multiple points.
     */
    virtual void hessian_list (const std::vector<Point<dim> > &points,
                               std::vector<Tensor<2,dim> >    &hessians,
                               const unsigned int              component = 0) const;
  };



  /**
   * Gradient of the cosine-shaped pillow function.
   *
   * This is a vector-valued function with @p dim components, the
   * gradient of CosineFunction. On the square [-1,1], it has tangential
   * boundary conditions zero. Thus, it can be used to test
   * implementations of Maxwell operators without bothering about
   * boundary terms.
   *
   * @ingroup functions
   * @author Guido Kanschat, 2010
   */
  template<int dim>
  class CosineGradFunction : public Function<dim>
  {
  public:
    /**
     * Constructor, creating a
     * function with @p dim components.
     */
    CosineGradFunction ();

    virtual double value (const Point<dim>   &p,
                          const unsigned int  component) const;
    virtual void vector_value (const Point<dim>   &p,
                               Vector<double>     &values) const;
    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component) const;

    virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                    std::vector<Vector<double> > &values) const;

    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component) const;

    virtual void gradient_list (const std::vector<Point<dim> > &points,
                                std::vector<Tensor<1,dim> >    &gradients,
                                const unsigned int              component) const;

    virtual void vector_gradient_list (const std::vector<Point<dim> >            &points,
                                       std::vector<std::vector<Tensor<1,dim> > > &gradients) const;

    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component) const;
  };



  /**
   * Product of exponential functions in each coordinate direction.
   *
   * @ingroup functions
   * @author Guido Kanschat, 1999
   */
  template<int dim>
  class ExpFunction : public Function<dim>
  {
  public:
    /**
     * The value at a single point.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Values at multiple points.
     */
    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    /**
     * Gradient at a single point.
     */
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

    /**
     * Gradients at multiple points.
     */
    virtual void gradient_list (const std::vector<Point<dim> > &points,
                                std::vector<Tensor<1,dim> >    &gradients,
                                const unsigned int              component = 0) const;

    /**
     * Laplacian at a single point.
     */
    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;

    /**
     * Laplacian at multiple points.
     */
    virtual void laplacian_list (const std::vector<Point<dim> > &points,
                                 std::vector<double>            &values,
                                 const unsigned int              component = 0) const;
  };



  /**
   * Harmonic singularity on the L-shaped domain in 2D.
   *
   * @ingroup functions
   * @author Guido Kanschat
   * @date 1999
   */
  class LSingularityFunction : public Function<2>
  {
  public:
    virtual double value (const Point<2>   &p,
                          const unsigned int  component = 0) const;

    virtual void value_list (const std::vector<Point<2> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    virtual void vector_value_list (const std::vector<Point<2> > &points,
                                    std::vector<Vector<double> > &values) const;

    virtual Tensor<1,2> gradient (const Point<2>     &p,
                                  const unsigned int  component = 0) const;

    virtual void gradient_list (const std::vector<Point<2> > &points,
                                std::vector<Tensor<1,2> >    &gradients,
                                const unsigned int            component = 0) const;

    virtual void vector_gradient_list (const std::vector<Point<2> > &,
                                       std::vector<std::vector<Tensor<1,2> > > &) const;

    virtual double laplacian (const Point<2>   &p,
                              const unsigned int  component = 0) const;

    virtual void laplacian_list (const std::vector<Point<2> > &points,
                                 std::vector<double>          &values,
                                 const unsigned int            component = 0) const;
  };



  /**
   * Gradient of the harmonic singularity on the L-shaped domain in 2D.
   *
   * The gradient of LSingularityFunction, which is a vector valued
   * function with vanishing curl and divergence.
   *
   * @ingroup functions
   * @author Guido Kanschat, 2010
   */
  class LSingularityGradFunction : public Function<2>
  {
  public:
    /**
     * Default constructor setting
     * the dimension to 2.
     */
    LSingularityGradFunction ();
    virtual double value (const Point<2>   &p,
                          const unsigned int  component) const;

    virtual void value_list (const std::vector<Point<2> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component) const;

    virtual void vector_value_list (const std::vector<Point<2> > &points,
                                    std::vector<Vector<double> > &values) const;

    virtual Tensor<1,2> gradient (const Point<2>     &p,
                                  const unsigned int  component) const;

    virtual void gradient_list (const std::vector<Point<2> > &points,
                                std::vector<Tensor<1,2> >    &gradients,
                                const unsigned int            component) const;

    virtual void vector_gradient_list (const std::vector<Point<2> > &,
                                       std::vector<std::vector<Tensor<1,2> > > &) const;

    virtual double laplacian (const Point<2>   &p,
                              const unsigned int  component) const;

    virtual void laplacian_list (const std::vector<Point<2> > &points,
                                 std::vector<double>          &values,
                                 const unsigned int            component) const;
  };



  /**
   * Singularity on the slit domain in 2D and 3D.
   *
   * @ingroup functions
   * @author Guido Kanschat, 1999, 2006
   */
  template <int dim>
  class SlitSingularityFunction : public Function<dim>
  {
  public:
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                    std::vector<Vector<double> > &values) const;

    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

    virtual void gradient_list (const std::vector<Point<dim> > &points,
                                std::vector<Tensor<1,dim> >    &gradients,
                                const unsigned int            component = 0) const;

    virtual void vector_gradient_list (const std::vector<Point<dim> > &,
                                       std::vector<std::vector<Tensor<1,dim> > > &) const;

    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;

    virtual void laplacian_list (const std::vector<Point<dim> > &points,
                                 std::vector<double>          &values,
                                 const unsigned int            component = 0) const;
  };


  /**
   * Singularity on the slit domain with one Neumann boundary in 2D.
   *
   * @ingroup functions
   * @author Guido Kanschat, 2002
   */
  class SlitHyperSingularityFunction : public Function<2>
  {
  public:
    virtual double value (const Point<2>   &p,
                          const unsigned int  component = 0) const;

    virtual void value_list (const std::vector<Point<2> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    virtual void vector_value_list (const std::vector<Point<2> > &points,
                                    std::vector<Vector<double> > &values) const;

    virtual Tensor<1,2> gradient (const Point<2>   &p,
                                  const unsigned int  component = 0) const;

    virtual void gradient_list (const std::vector<Point<2> > &points,
                                std::vector<Tensor<1,2> >    &gradients,
                                const unsigned int            component = 0) const;

    virtual void vector_gradient_list (const std::vector<Point<2> > &,
                                       std::vector<std::vector<Tensor<1,2> > > &) const;

    virtual double laplacian (const Point<2>   &p,
                              const unsigned int  component = 0) const;

    virtual void laplacian_list (const std::vector<Point<2> > &points,
                                 std::vector<double>          &values,
                                 const unsigned int            component = 0) const;
  };



  /**
   * A jump in x-direction transported into some direction.
   *
   * If the advection is parallel to the y-axis, the function is
   * <tt>-atan(sx)</tt>, where <tt>s</tt> is the steepness parameter provided in
   * the constructor.
   *
   * For different advection directions, this function will be turned in
   * the parameter space.
   *
   * Together with the function, its derivatives and Laplacian are defined.
   *
   * @ingroup functions
   * @author: Guido Kanschat, 2000
   */
  template<int dim>
  class JumpFunction : public Function<dim>
  {
  public:
    /**
     * Constructor. Provide the
     * advection direction here and
     * the steepness of the slope.
     */
    JumpFunction (const Point<dim> &direction,
                  const double      steepness);

    /**
     * Function value at one point.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Function values at multiple
     * points.
     */
    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    /**
     * Gradient at one point.
     */
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

    /**
       Gradients at multiple points.
    */
    virtual void gradient_list (const std::vector<Point<dim> > &points,
                                std::vector<Tensor<1,dim> >    &gradients,
                                const unsigned int              component = 0) const;

    /**
     * Laplacian of the function at one point.
     */
    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;

    /**
     * Laplacian of the function at multiple points.
     */
    virtual void laplacian_list (const std::vector<Point<dim> > &points,
                                 std::vector<double>            &values,
                                 const unsigned int              component = 0) const;

    /**
     * Determine an estimate for
     * the memory consumption (in
     * bytes) of this
     * object. Since sometimes
     * the size of objects can
     * not be determined exactly
     * (for example: what is the
     * memory consumption of an
     * STL <tt>std::map</tt> type with a
     * certain number of
     * elements?), this is only
     * an estimate. however often
     * quite close to the true
     * value.
     */
    std::size_t memory_consumption () const;

  protected:
    /**
     * Advection vector.
     */
    const Point<dim> direction;

    /**
     * Steepness (maximal derivative)
     * of the slope.
     */
    const double steepness;

    /**
     * Advection angle.
     */
    double angle;

    /**
     * Sine of <tt>angle</tt>.
     */
    double sine;

    /**
     * Cosine of <tt>angle</tt>.
     */
    double cosine;
  };



  /**
   * Given a wavenumber vector generate a cosine function. The
   * wavenumber coefficient is given as a $d$-dimensional point $k$
   * in Fourier space, and the function is then recovered as $f(x) =
   * \cos(\sum_i k_i x_i) = Re(\exp(i k.x))$.
   *
   * The class has its name from the fact that it resembles one
   * component of a Fourier cosine decomposition.
   *
   * @ingroup functions
   * @author Wolfgang Bangerth, 2001
   */
  template <int dim>
  class FourierCosineFunction : public Function<dim>
  {
  public:
    /**
     * Constructor. Take the Fourier
     * coefficients in each space
     * direction as argument.
     */
    FourierCosineFunction (const Point<dim> &fourier_coefficients);

    /**
     * Return the value of the
     * function at the given
     * point. Unless there is only
     * one component (i.e. the
     * function is scalar), you
     * should state the component you
     * want to have evaluated; it
     * defaults to zero, i.e. the
     * first component.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Return the gradient of the
     * specified component of the
     * function at the given point.
     */
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

    /**
     * Compute the Laplacian of a
     * given component at point <tt>p</tt>.
     */
    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;
  private:
    /**
     * Stored Fourier coefficients.
     */
    const Point<dim> fourier_coefficients;
  };



  /**
   * Given a wavenumber vector generate a sine function. The
   * wavenumber coefficient is given as a $d$-dimensional point $k$
   * in Fourier space, and the function is then recovered as $f(x) =
   * \sin(\sum_i k_i x_i) = Im(\exp(i k.x))$.
   *
   * The class has its name from the fact that it resembles one
   * component of a Fourier sine decomposition.
   *
   * @ingroup functions
   * @author Wolfgang Bangerth, 2001
   */
  template <int dim>
  class FourierSineFunction : public Function<dim>
  {
  public:
    /**
     * Constructor. Take the Fourier
     * coefficients in each space
     * direction as argument.
     */
    FourierSineFunction (const Point<dim> &fourier_coefficients);

    /**
     * Return the value of the
     * function at the given
     * point. Unless there is only
     * one component (i.e. the
     * function is scalar), you
     * should state the component you
     * want to have evaluated; it
     * defaults to zero, i.e. the
     * first component.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Return the gradient of the
     * specified component of the
     * function at the given point.
     */
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

    /**
     * Compute the Laplacian of a
     * given component at point <tt>p</tt>.
     */
    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;
  private:
    /**
     * Stored Fourier coefficients.
     */
    const Point<dim> fourier_coefficients;
  };


  /**
   * Given a sequence of wavenumber vectors and weights generate a sum
   * of sine functions. Each wavenumber coefficient is given as a
   * $d$-dimensional point $k$ in Fourier space, and the entire
   * function is then recovered as
   * $f(x) = \sum_j w_j sin(\sum_i k_i x_i) = Im(\sum_j w_j \exp(i k.x))$.
   *
   * @ingroup functions
   * @author Wolfgang Bangerth, 2001
   */
  template <int dim>
  class FourierSineSum : public Function<dim>
  {
  public:
    /**
     * Constructor. Take the Fourier
     * coefficients in each space
     * direction as argument.
     */
    FourierSineSum (const std::vector<Point<dim> > &fourier_coefficients,
                    const std::vector<double>      &weights);

    /**
     * Return the value of the
     * function at the given
     * point. Unless there is only
     * one component (i.e. the
     * function is scalar), you
     * should state the component you
     * want to have evaluated; it
     * defaults to zero, i.e. the
     * first component.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Return the gradient of the
     * specified component of the
     * function at the given point.
     */
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

    /**
     * Compute the Laplacian of a
     * given component at point <tt>p</tt>.
     */
    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;
  private:
    /**
     * Stored Fourier coefficients
     * and weights.
     */
    const std::vector<Point<dim> > fourier_coefficients;
    const std::vector<double>      weights;
  };



  /**
   * Given a sequence of wavenumber vectors and weights generate a sum
   * of cosine functions. Each wavenumber coefficient is given as a
   * $d$-dimensional point $k$ in Fourier space, and the entire
   * function is then recovered as
   * $f(x) = \sum_j w_j cos(\sum_i k_i x_i) = Re(\sum_j w_j \exp(i k.x))$.
   *
   * @ingroup functions
   * @author Wolfgang Bangerth, 2001
   */
  template <int dim>
  class FourierCosineSum : public Function<dim>
  {
  public:
    /**
     * Constructor. Take the Fourier
     * coefficients in each space
     * direction as argument.
     */
    FourierCosineSum (const std::vector<Point<dim> > &fourier_coefficients,
                      const std::vector<double>      &weights);

    /**
     * Return the value of the
     * function at the given
     * point. Unless there is only
     * one component (i.e. the
     * function is scalar), you
     * should state the component you
     * want to have evaluated; it
     * defaults to zero, i.e. the
     * first component.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Return the gradient of the
     * specified component of the
     * function at the given point.
     */
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

    /**
     * Compute the Laplacian of a
     * given component at point <tt>p</tt>.
     */
    virtual double laplacian (const Point<dim>   &p,
                              const unsigned int  component = 0) const;

  private:
    /**
     * Stored Fourier coefficients
     * and weights.
     */
    const std::vector<Point<dim> > fourier_coefficients;
    const std::vector<double>      weights;
  };


  /**
   * Base function for cut-off function. This class stores the center
   * and the radius of the supporting ball of a cut-off function. It
   * also stores the number of the non-zero component, if the function
   * is vector-valued.
   *
   * @ingroup functions
   * @author Guido Kanschat, 2002
   */
  template <int dim>
  class CutOffFunctionBase : public Function<dim>
  {
  public:
    /**
     * Value used in the
     * constructor of this and
     * derived classes to denote
     * that no component is
     * selected.
     */
    static const unsigned int no_component = numbers::invalid_unsigned_int;

    /**
     * Constructor. Arguments are the
     * center of the ball and its
     * radius.
     *
     * If an argument <tt>select</tt> is
     * given and not -1, the
     * cut-off function will be
     * non-zero for this component
     * only.
     */
    CutOffFunctionBase (const double radius = 1.,
                        const Point<dim> = Point<dim>(),
                        const unsigned int n_components = 1,
                        const unsigned int select = CutOffFunctionBase<dim>::no_component);

    /**
     * Move the center of the ball
     * to new point <tt>p</tt>.
     */
    void new_center (const Point<dim> &p);

    /**
     * Set the radius of the ball to <tt>r</tt>.
     */
    void new_radius (const double r);

  protected:
    /**
     * Center of the integration ball.
     */
    Point<dim> center;

    /**
     * Radius of the ball.
     */
    double radius;

    /**
     * Component selected. If
     * <tt>no_component</tt>, the function is
     * the same in all components.
     */
    const unsigned int selected;
  };



  /**
   * Cut-off function in L-infinity for an arbitrary ball.  This
   * function is the characteristic function of a ball around <tt>center</tt>
   * with a specified <tt>radius</tt>, that is,
   * \f[
   * f = \chi(B_r(c)).
   * \f]
   * If vector valued, it can be restricted
   * to a single component.
   *
   * @ingroup functions
   * @author Guido Kanschat, 2001, 2002
   */
  template<int dim>
  class CutOffFunctionLinfty : public CutOffFunctionBase<dim>
  {
  public:
    /**
     * Constructor. Arguments are the
     * center of the ball and its
     * radius.
     *
     * If an argument <tt>select</tt> is
     * given and not -1, the
     * cut-off function will be
     * non-zero for this component
     * only.
     */
    CutOffFunctionLinfty (const double radius = 1.,
                          const Point<dim> = Point<dim>(),
                          const unsigned int n_components = 1,
                          const unsigned int select = CutOffFunctionBase<dim>::no_component);

    /**
     * Function value at one point.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Function values at multiple points.
     */
    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    /**
     * Function values at multiple points.
     */
    virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                    std::vector<Vector<double> >           &values) const;
  };


  /**
   * Cut-off function for an arbitrary ball. This function is a cone
   * with support in a ball of certain <tt>radius</tt> around <tt>center</tt>. The
   * maximum value is 1. If vector valued, it can be restricted
   * to a single component.
   *
   * @ingroup functions
   * @author Guido Kanschat, 2001, 2002
   */
  template<int dim>
  class CutOffFunctionW1 : public CutOffFunctionBase<dim>
  {
  public:
    /**
     * Constructor. Arguments are the
     * center of the ball and its
     * radius.
     * radius.
     *
     * If an argument <tt>select</tt> is
     * given, the cut-off function
     * will be non-zero for this
     * component only.
     */
    CutOffFunctionW1 (const double radius = 1.,
                      const Point<dim> = Point<dim>(),
                      const unsigned int n_components = 1,
                      const unsigned int select = CutOffFunctionBase<dim>::no_component);

    /**
     * Function value at one point.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Function values at multiple points.
     */
    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    /**
     * Function values at multiple points.
     */
    virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                    std::vector<Vector<double> >           &values) const;
  };


  /**
   * Cut-off function for an arbitrary ball. This is the traditional
   * cut-off function in C-infinity for a ball of certain <tt>radius</tt>
   * around <tt>center</tt>, $f(r)=exp(1-1/(1-r**2/s**2))$, where $r$ is the
   * distance to the center, and $s$ is the radius of the sphere. If
   * vector valued, it can be restricted to a single component.
   *
   * @ingroup functions
   * @author Guido Kanschat, 2001, 2002
   */
  template<int dim>
  class CutOffFunctionCinfty : public CutOffFunctionBase<dim>
  {
  public:
    /**
     * Constructor. Arguments are the
     * center of the ball and its
     * radius.
     * radius.
     *
     * If an argument <tt>select</tt> is
     * given, the cut-off function
     * will be non-zero for this
     * component only.
     */
    CutOffFunctionCinfty (const double radius = 1.,
                          const Point<dim> = Point<dim>(),
                          const unsigned int n_components = 1,
                          const unsigned int select = CutOffFunctionBase<dim>::no_component);

    /**
     * Function value at one point.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Function values at multiple points.
     */
    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    /**
     * Function values at multiple points.
     */
    virtual void vector_value_list (const std::vector<Point<dim> > &points,
                                    std::vector<Vector<double> >           &values) const;

    /**
     * Function gradient at one point.
     */
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;
  };



  /**
   * A class that represents a function object for a monomial. Monomials are
   * polynomials with only a single term, i.e. in 1-d they have the form
   * $x^\alpha$, in 2-d the form $x_1^{\alpha_1}x_2^{\alpha_2}$, and in 3-d
   * $x_1^{\alpha_1}x_2^{\alpha_2}x_3^{\alpha_3}$. Monomials are therefore
   * described by a $dim$-tuple of exponents. Consequently, the class's
   * constructor takes a Tensor<1,dim> to describe the set of exponents. Most of
   * the time these exponents will of course be integers, but real exponents are
   * of course equally valid.
   *
   * @author Wolfgang Bangerth, 2006
   */
  template <int dim>
  class Monomial : public Function<dim>
  {
  public:
    /**
     * Constructor. The first argument is
     * explained in the general description
     * of the class. The second argument
     * denotes the number of vector
     * components this object shall
     * represent. All vector components
     * will have the same value.
     */
    Monomial (const Tensor<1,dim> &exponents,
              const unsigned int n_components = 1);

    /**
     * Function value at one point.
     */
    virtual double value (const Point<dim>   &p,
                          const unsigned int  component = 0) const;

    /**
     * Return all components of a
     * vector-valued function at a
     * given point.
     *
     * <tt>values</tt> shall have the right
     * size beforehand,
     * i.e. #n_components.
     */
    virtual void vector_value (const Point<dim>   &p,
                               Vector<double>     &values) const;

    /**
     * Function values at multiple points.
     */
    virtual void value_list (const std::vector<Point<dim> > &points,
                             std::vector<double>            &values,
                             const unsigned int              component = 0) const;

    /**
     * Function gradient at one point.
     */
    virtual Tensor<1,dim> gradient (const Point<dim>   &p,
                                    const unsigned int  component = 0) const;

  private:
    /**
     * The set of exponents.
     */
    const Tensor<1,dim> exponents;
  };

}
DEAL_II_NAMESPACE_CLOSE

#endif