This file is indexed.

/usr/include/deal.II/base/polynomial.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
// ---------------------------------------------------------------------
// $Id: polynomial.h 30036 2013-07-18 16:55:32Z maier $
//
// Copyright (C) 2000 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__polynomial_h
#define __deal2__polynomial_h



#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/point.h>
#include <deal.II/base/std_cxx1x/shared_ptr.h>

#include <vector>

DEAL_II_NAMESPACE_OPEN

/**
 * @addtogroup Polynomials
 * @{
 */

/**
 * A namespace in which classes relating to the description of 1d polynomial
 * spaces are declared.
 */
namespace Polynomials
{

  /**
   * Base class for all 1D polynomials. A polynomial is represented in
   * this class by its coefficients, which are set through the
   * constructor or by derived classes. Evaluation of a polynomial
   * happens through the Horner scheme which provides both numerical
   * stability and a minimal number of numerical operations.
   *
   * @author Ralf Hartmann, Guido Kanschat, 2000, 2006
   */
  template <typename number>
  class Polynomial : public Subscriptor
  {
  public:
    /**
     * Constructor. The coefficients of the polynomial are passed as
     * arguments, and denote the polynomial $\sum_i a[i] x^i$, i.e. the first
     * element of the array denotes the constant term, the second the linear
     * one, and so on. The degree of the polynomial represented by this object
     * is thus the number of elements in the <tt>coefficient</tt> array minus
     * one.
     */
    Polynomial (const std::vector<number> &coefficients);

    /**
     * Constructor creating a zero polynomial of degree @p n.
     */
    Polynomial (const unsigned int n);

    /**
     * Constructor for Lagrange polynomial and its point of evaluation. The
     * idea is to construct $\prod_{i\neq j} \frac{x-x_i}{x_j-x_i}$, where j
     * is the evaluation point specified as argument and the support points
     * contain all points (including x_j, which will internally not be
     * stored).
     */
    Polynomial (const std::vector<Point<1> > &lagrange_support_points,
                const unsigned int            evaluation_point);

    /**
     * Default constructor creating an illegal object.
     */
    Polynomial ();

    /**
     * Return the value of this polynomial at the given point.
     *
     * This function uses the Horner scheme for numerical stability of the
     * evaluation.
     */
    number value (const number x) const;

    /**
     * Return the values and the derivatives of the Polynomial at point
     * <tt>x</tt>.  <tt>values[i], i=0,...,values.size()-1</tt> includes the
     * <tt>i</tt>th derivative. The number of derivatives to be computed is
     * thus determined by the size of the array passed.
     *
     * This function uses the Horner scheme for numerical stability of the
     * evaluation.
     */
    void value (const number         x,
                std::vector<number> &values) const;

    /**
     * Degree of the polynomial. This is the degree reflected by the number of
     * coefficients provided by the constructor. Leading non-zero coefficients
     * are not treated separately.
     */
    unsigned int degree () const;

    /**
     * Scale the abscissa of the polynomial.  Given the polynomial <i>p(t)</i>
     * and the scaling <i>t = ax</i>, then the result of this operation is the
     * polynomial <i>q</i>, such that <i>q(x) = p(t)</i>.
     *
     * The operation is performed in place.
     */
    void scale (const number factor);

    /**
     * Shift the abscissa oft the polynomial.  Given the polynomial
     * <i>p(t)</i> and the shift <i>t = x + a</i>, then the result of this
     * operation is the polynomial <i>q</i>, such that <i>q(x) = p(t)</i>.
     *
     * The template parameter allows to compute the new coefficients with
     * higher accuracy, since all computations are performed with type
     * <tt>number2</tt>. This may be necessary, since this operation involves
     * a big number of additions. On a Sun Sparc Ultra with Solaris 2.8, the
     * difference between <tt>double</tt> and <tt>long double</tt> was not
     * significant, though.
     *
     * The operation is performed in place, i.e. the coefficients of the
     * present object are changed.
     */
    template <typename number2>
    void shift (const number2 offset);

    /**
     * Compute the derivative of a polynomial.
     */
    Polynomial<number> derivative () const;

    /**
     * Compute the primitive of a polynomial. the coefficient of the zero
     * order term of the polynomial is zero.
     */
    Polynomial<number> primitive () const;

    /**
     * Multiply with a scalar.
     */
    Polynomial<number> &operator *= (const double s);

    /**
     * Multiply with another polynomial.
     */
    Polynomial<number> &operator *= (const Polynomial<number> &p);

    /**
     * Add a second polynomial.
     */
    Polynomial<number> &operator += (const Polynomial<number> &p);

    /**
     * Subtract a second polynomial.
     */
    Polynomial<number> &operator -= (const Polynomial<number> &p);

    /**
     *  Test for equality of two polynomials.
     */
    bool operator == (const Polynomial<number> &p)  const;

    /**
     * Print coefficients.
     */
    void print(std::ostream &out) const;

    /**
     * Write or read the data of this object to or from a stream for the
     * purpose of serialization.
     */
    template <class Archive>
    void serialize (Archive &ar, const unsigned int version);

  protected:

    /**
     * This function performs the actual scaling.
     */
    static void scale (std::vector<number> &coefficients,
                       const number         factor);

    /**
     * This function performs the actual shift
     */
    template <typename number2>
    static void shift (std::vector<number> &coefficients,
                       const number2        shift);

    /**
     * Multiply polynomial by a factor.
     */
    static void multiply (std::vector<number> &coefficients,
                          const number factor);

    /**
     * Transforms polynomial form of product of linear factors into standard
     * form, $\sum_i a_i x^i$. Deletes all data structures related to the
     * product form.
     */
    void transform_into_standard_form ();

    /**
     * Coefficients of the polynomial $\sum_i a_i x^i$. This vector is filled
     * by the constructor of this class and may be passed down by derived
     * classes.
     *
     * This vector cannot be constant since we want to allow copying of
     * polynomials.
     */
    std::vector<number> coefficients;

    /**
     * Stores whether the polynomial is in Lagrange product form, i.e.,
     * constructed as a product $(x-x_0) (x-x_1) \ldots (x-x_n)/c$, or not.
     */
    bool in_lagrange_product_form;

    /**
     * If the polynomial is in Lagrange product form, i.e., constructed as a
     * product $(x-x_0) (x-x_1) \ldots (x-x_n)/c$, store the shifts $x_i$.
     */
    std::vector<number> lagrange_support_points;

    /**
     * If the polynomial is in Lagrange product form, i.e., constructed as a
     * product $(x-x_0) (x-x_1) \ldots (x-x_n)/c$, store the weight c.
     */
    number lagrange_weight;
  };


  /**
   * Class generates Polynomial objects representing a monomial of
   * degree n, that is, the function $x^n$.
   *
   * @author Guido Kanschat, 2004
   */
  template <typename number>
  class Monomial : public Polynomial<number>
  {
  public:
    /**
     * Constructor, taking the
     * degree of the monomial and
     * an optional coefficient as
     * arguments.
     */
    Monomial(const unsigned int n,
             const double coefficient = 1.);

    /**
     * Return a vector of Monomial
     * objects of degree zero
     * through <tt>degree</tt>, which
     * then spans the full space of
     * polynomials up to the given
     * degree. This function may be
     * used to initialize the
     * TensorProductPolynomials
     * and PolynomialSpace
     * classes.
     */
    static
    std::vector<Polynomial<number> >
    generate_complete_basis (const unsigned int degree);

  private:
    /**
     * Needed by constructor.
     */
    static std::vector<number> make_vector(unsigned int n,
                                           const double coefficient);
  };


  /**
   * Lagrange polynomials with equidistant interpolation points in
   * [0,1]. The polynomial of degree <tt>n</tt> has got <tt>n+1</tt> interpolation
   * points. The interpolation points are sorted in ascending
   * order. This order gives an index to each interpolation point.  A
   * Lagrangian polynomial equals to 1 at its `support point', and 0 at
   * all other interpolation points. For example, if the degree is 3,
   * and the support point is 1, then the polynomial represented by this
   * object is cubic and its value is 1 at the point <tt>x=1/3</tt>, and zero
   * at the point <tt>x=0</tt>, <tt>x=2/3</tt>, and <tt>x=1</tt>. All the polynomials
   * have polynomial degree equal to <tt>degree</tt>, but together they span
   * the entire space of polynomials of degree less than or equal
   * <tt>degree</tt>.
   *
   * The Lagrange polynomials are implemented up to degree 10.
   *
   * @author Ralf Hartmann, 2000
   */
  class LagrangeEquidistant: public Polynomial<double>
  {
  public:
    /**
     * Constructor. Takes the degree <tt>n</tt> of the Lagrangian polynom and
     * the index <tt>support_point</tt> of the support point. Fills the
     * <tt>coefficients</tt> of the base class Polynomial.
     */
    LagrangeEquidistant (const unsigned int n,
                         const unsigned int support_point);

    /**
     * Return a vector of polynomial objects of degree <tt>degree</tt>, which
     * then spans the full space of polynomials up to the given degree. The
     * polynomials are generated by calling the constructor of this class with
     * the same degree but support point running from zero to
     * <tt>degree</tt>. This function may be used to initialize the
     * TensorProductPolynomials and PolynomialSpace classes.
     */
    static
    std::vector<Polynomial<double> >
    generate_complete_basis (const unsigned int degree);

  private:

    /**
     * Computes the <tt>coefficients</tt> of the base class Polynomial. This
     * function is <tt>static</tt> to allow to be called in the constructor.
     */
    static
    void
    compute_coefficients (const unsigned int n,
                          const unsigned int support_point,
                          std::vector<double> &a);
  };



  /**
   * Given a set of points along the real axis, this function returns all
   * Lagrange polynomials for interpolation of these points. The number of
   * polynomials is equal to the number of points and the maximum degree is
   * one less.
   */
  std::vector<Polynomial<double> >
  generate_complete_Lagrange_basis (const std::vector<Point<1> > &points);



  /**
   * Legendre polynomials of arbitrary degree.
   * Constructing a Legendre polynomial of degree <tt>p</tt>, the coefficients
   * will be computed by the three-term recursion formula.
   *
   * @note The polynomials defined by this class differ in two aspects by what
   * is usually referred to as Legendre polynomials: (i) This classes defines
   * them on the reference interval $[0,1]$, rather than the commonly used
   * interval $[-1,1]$. (ii) The polynomials have been scaled in such a way that
   * they are orthonormal, not just orthogonal; consequently, the polynomials do
   * not necessarily have boundary values equal to one.
   *
   * @author Guido Kanschat, 2000
   */
  class Legendre : public Polynomial<double>
  {
  public:
    /**
     * Constructor for polynomial of
     * degree <tt>p</tt>.
     */
    Legendre (const unsigned int p);

    /**
     * Return a vector of Legendre
     * polynomial objects of degrees
     * zero through <tt>degree</tt>, which
     * then spans the full space of
     * polynomials up to the given
     * degree. This function may be
     * used to initialize the
     * TensorProductPolynomials
     * and PolynomialSpace
     * classes.
     */
    static
    std::vector<Polynomial<double> >
    generate_complete_basis (const unsigned int degree);

  private:
    /**
     * Coefficients for the interval $[0,1]$.
     */
    static std::vector<std_cxx1x::shared_ptr<const std::vector<double> > > shifted_coefficients;

    /**
     * Vector with already computed
     * coefficients. For each degree of the
     * polynomial, we keep one pointer to
     * the list of coefficients; we do so
     * rather than keeping a vector of
     * vectors in order to simplify
     * programming multithread-safe. In
     * order to avoid memory leak, we use a
     * shared_ptr in order to correctly
     * free the memory of the vectors when
     * the global destructor is called.
     */
    static std::vector<std_cxx1x::shared_ptr<const std::vector<double> > > recursive_coefficients;

    /**
     * Compute coefficients recursively.
     * The coefficients are stored in a
     * static data vector to be available
     * when needed next time. Since the
     * recursion is performed for the
     * interval $[-1,1]$, the polynomials
     * are shifted to $[0,1]$ by the
     * <tt>scale</tt> and <tt>shift</tt>
     * functions of <tt>Polynomial</tt>,
     * afterwards.
     */
    static void compute_coefficients (const unsigned int p);

    /**
     * Get coefficients for
     * constructor.  This way, it can
     * use the non-standard
     * constructor of
     * Polynomial.
     */
    static const std::vector<double> &
    get_coefficients (const unsigned int k);
  };

  /**
   * Lobatto polynomials of arbitrary degree on <tt>[0,1]</tt>.
   *
   * These polynomials are the integrated Legendre polynomials on [0,1]. The
   * first two polynomials are the standard linear shape functions given by
   * $l_0(x) = 1-x$ and $l_1(x) = x$. For $i\geq2$ we use the definition $l_i(x)
   * = \frac{1}{\Vert L_{i-1}\Vert_2}\int_0^x L_{i-1}(t)\,dt$, where $L_i$
   * denotes the $i$-th Legendre polynomial on $[0,1]$. The Lobatto polynomials
   * $l_0,\ldots,l_k$ form a complete basis of the polynomials space of degree
   * $k$.
   *
   * Calling the constructor with a given index <tt>k</tt> will generate the
   * polynomial with index <tt>k</tt>. But only for $k\geq 1$ the index equals
   * the degree of the polynomial. For <tt>k==0</tt> also a polynomial of degree
   * 1 is generated.
   *
   * These polynomials are used for the construction of the shape functions of
   * N&eacute;d&eacute;lec elements of arbitrary order.
   *
   * @author Markus B&uuml;rg, 2009
   */
  class Lobatto : public Polynomial<double>
  {
  public:
    /**
     * Constructor for polynomial of degree
     * <tt>p</tt>. There is an exception
     * for <tt>p==0</tt>, see the general
     * documentation.
     */
    Lobatto (const unsigned int p = 0);

    /**
     * Return the polynomials with index
     * <tt>0</tt> up to
     * <tt>degree</tt>. There is an
     * exception for <tt>p==0</tt>, see the
     * general documentation.
     */
    static std::vector<Polynomial<double> >
    generate_complete_basis (const unsigned int p);

  private:
    /**
     * Compute coefficients recursively.
     */
    std::vector<double> compute_coefficients (const unsigned int p);
  };



  /**
   * Hierarchical polynomials of arbitrary degree on <tt>[0,1]</tt>.
   *
   * When Constructing a Hierarchical polynomial of degree <tt>p</tt>,
   * the coefficients will be computed by a recursion formula.  The
   * coefficients are stored in a static data vector to be available
   * when needed next time.
   *
   * These hierarchical polynomials are based on those of Demkowicz, Oden,
   * Rachowicz, and Hardy (CMAME 77 (1989) 79-112, Sec. 4). The first two
   * polynomials are the standard linear shape functions given by
   * $\phi_{0}(x) = 1 - x$ and $\phi_{1}(x) = x$. For $l \geq 2$
   * we use the definitions $\phi_{l}(x) = (2x-1)^l - 1, l = 2,4,6,...$
   * and $\phi_{l}(x) = (2x-1)^l - (2x-1), l = 3,5,7,...$. These satisfy the
   * recursion relations $\phi_{l}(x) = (2x-1)\phi_{l-1}, l=3,5,7,...$ and
   * $\phi_{l}(x) = (2x-1)\phi_{l-1} + \phi_{2}, l=4,6,8,...$.
   *
   * The degrees of freedom are the values at the vertices and the
   * derivatives at the midpoint. Currently, we do not scale the
   * polynomials in any way, although better conditioning of the
   * element stiffness matrix could possibly be achieved with scaling.
   *
   * Calling the constructor with a given index <tt>p</tt> will generate the
   * following: if <tt>p==0</tt>, then the resulting polynomial is the linear
   * function associated with the left vertex, if <tt>p==1</tt> the one
   * associated with the right vertex. For higher values of <tt>p</tt>, you
   * get the polynomial of degree <tt>p</tt> that is orthogonal to all
   * previous ones. Note that for <tt>p==0</tt> you therefore do <b>not</b>
   * get a polynomial of degree zero, but one of degree one. This is to
   * allow generating a complete basis for polynomial spaces, by just
   * iterating over the indices given to the constructor.
   *
   * On the other hand, the function generate_complete_basis() creates
   * a complete basis of given degree. In order to be consistent with
   * the concept of a polynomial degree, if the given argument is zero,
   * it does <b>not</b> return the linear polynomial described above, but
   * rather a constant polynomial.
   *
   * @author Brian Carnes, 2002
   */
  class Hierarchical : public Polynomial<double>
  {
  public:
    /**
     * Constructor for polynomial of
     * degree <tt>p</tt>. There is an
     * exception for <tt>p==0</tt>, see
     * the general documentation.
     */
    Hierarchical (const unsigned int p);

    /**
     * Return a vector of
     * Hierarchical polynomial
     * objects of degrees zero through
     * <tt>degree</tt>, which then spans
     * the full space of polynomials
     * up to the given degree. Note
     * that there is an exception if
     * the given <tt>degree</tt> equals
     * zero, see the general
     * documentation of this class.
     *
     * This function may be
     * used to initialize the
     * TensorProductPolynomials,
     * AnisotropicPolynomials,
     * and PolynomialSpace
     * classes.
     */
    static
    std::vector<Polynomial<double> >
    generate_complete_basis (const unsigned int degree);

  private:
    /**
     * Compute coefficients recursively.
     */
    static void compute_coefficients (const unsigned int p);

    /**
     * Get coefficients for
     * constructor.  This way, it can
     * use the non-standard
     * constructor of
     * Polynomial.
     */
    static const std::vector<double> &
    get_coefficients (const unsigned int p);

    /**
     * Vector with already computed
     * coefficients. For each degree of the
     * polynomial, we keep one pointer to
     * the list of coefficients; we do so
     * rather than keeping a vector of
     * vectors in order to simplify
     * programming multithread-safe. In
     * order to avoid memory leak, we use a
     * shared_ptr in order to correctly
     * free the memory of the vectors when
     * the global destructor is called.
     */
    static std::vector<std_cxx1x::shared_ptr<const std::vector<double> > > recursive_coefficients;
  };


  /**
   * Polynomials for Hermite interpolation condition.
   *
   * This is the set of polynomials of degree at least three, such that
   * the following interpolation conditions are met: the polynomials and
   * their first derivatives vanish at the values <i>x</i>=0 and
   * <i>x</i>=1, with the exceptions <i>p</i><sub>0</sub>(0)=1,
   * <i>p</i><sub><i>1</i></sub>(1)=1, <i>p</i>'<sub>2</sub>(0)=1,
   * <i>p'</i><sub>3</sub>(1)=1.
   *
   * For degree three, we obtain the standard four Hermitian
   * interpolation polynomials, see for instance <a
   * href="http://en.wikipedia.org/wiki/Cubic_Hermite_spline">Wikipedia</a>.
   * For higher degrees, these are augmented
   * first, by the polynomial of degree four with vanishing values and
   * derivatives at <i>x</i>=0 and <i>x</i>=1, then by the product of
   * this fourth order polynomial with Legendre polynomials of
   * increasing order. The implementation is
   * @f{align*}{
   * p_0(x) &= 2x^3-3x^2+1 \\
   * p_1(x) &= -2x^2+3x^2 \\
   * p_2(x) &= x^3-2x^2+x  \\
   * p_3(x) &= x^3-x^2 \\
   * p_4(x) &= 16x^2(x-1)^2 \\
   * \ldots & \ldots \\
   * p_k(x) &= x^2(x-1)^2 L_{k-4}(x)
   * @f}
   *
   * @author Guido Kanschat
   * @date 2012
   */
  class HermiteInterpolation : public Polynomial<double>
  {
  public:
    /**
                               * Constructor for polynomial
                               * with index <tt>p</tt>. See
                               * the class documentation on
                               * the definition of the
                               * sequence of polynomials.
                               */
    HermiteInterpolation (const unsigned int p);

    /**
     * Return the polynomials with index
     * <tt>0</tt> up to
     * <tt>p+1</tt> in a space of
     * degree up to
     * <tt>p</tt>. Here, <tt>p</tt>
     * has to be at least 3.
     */
    static std::vector<Polynomial<double> >
    generate_complete_basis (const unsigned int p);
  };
}


/** @} */

/* -------------------------- inline functions --------------------- */

namespace Polynomials
{
  template <typename number>
  inline
  Polynomial<number>::Polynomial ()
    :
    in_lagrange_product_form (false),
    lagrange_weight          (1.)
  {}



  template <typename number>
  inline
  unsigned int
  Polynomial<number>::degree () const
  {
    if (in_lagrange_product_form == true)
      {
        return lagrange_support_points.size();
      }
    else
      {
        Assert (coefficients.size()>0, ExcEmptyObject());
        return coefficients.size() - 1;
      }
  }



  template <typename number>
  inline
  number
  Polynomial<number>::value (const number x) const
  {
    if (in_lagrange_product_form == false)
      {
        Assert (coefficients.size() > 0, ExcEmptyObject());

        // Horner scheme
        const unsigned int m=coefficients.size();
        number value = coefficients.back();
        for (int k=m-2; k>=0; --k)
          value = value*x + coefficients[k];
        return value;
      }
    else
      {
        // direct evaluation of Lagrange polynomial
        const unsigned int m = lagrange_support_points.size();
        number value = 1.;
        for (unsigned int j=0; j<m; ++j)
          value *= x-lagrange_support_points[j];
        value *= lagrange_weight;
        return value;
      }
  }



  template <typename number>
  template <class Archive>
  inline
  void
  Polynomial<number>::serialize (Archive &ar, const unsigned int)
  {
    // forward to serialization function in the base class.
    ar &static_cast<Subscriptor &>(*this);
    ar &coefficients;
    ar &in_lagrange_product_form;
    ar &lagrange_support_points;
    ar &lagrange_weight;
  }

}
DEAL_II_NAMESPACE_CLOSE

#endif