/usr/include/deal.II/base/polynomial_space.h is in libdeal.ii-dev 8.1.0-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 | // ---------------------------------------------------------------------
// $Id: polynomial_space.h 30766 2013-09-17 14:38:55Z kronbichler $
//
// Copyright (C) 2002 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef __deal2__polynomial_space_h
#define __deal2__polynomial_space_h
#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/tensor.h>
#include <deal.II/base/point.h>
#include <deal.II/base/polynomial.h>
#include <deal.II/base/smartpointer.h>
#include <vector>
DEAL_II_NAMESPACE_OPEN
/**
* Representation of the space of polynomials of degree at most n in
* higher dimensions.
*
* Given a vector of <i>n</i> one-dimensional polynomials
* <i>P<sub>0</sub></i> to <i>P<sub>n</sub></i>, where
* <i>P<sub>i</sub></i> has degree <i>i</i>, this class generates all
* dim-dimensional polynomials of the form <i>
* P<sub>ijk</sub>(x,y,z) =
* P<sub>i</sub>(x)P<sub>j</sub>(y)P<sub>k</sub>(z)</i>, where the sum
* of <i>i</i>, <i>j</i> and <i>k</i> is less than or equal <i>n</i>.
*
* The output_indices() function prints the ordering of the
* polynomials, i.e. for each dim-dimensional polynomial in the
* polynomial space it gives the indices i,j,k of the one-dimensional
* polynomials in x,y and z direction. The ordering of the
* dim-dimensional polynomials can be changed by using the
* set_numbering() function.
*
* The standard ordering of polynomials is that indices for the first
* space dimension vary fastest and the last space dimension is
* slowest. In particular, if we take for simplicity the vector of
* monomials <i>x<sup>0</sup>, x<sup>1</sup>, x<sup>2</sup>,...,
* x<sup>n</sup></i>, we get
*
* <dl>
* <dt> 1D <dd> <i> x<sup>0</sup>, x<sup>1</sup>,...,x<sup>n</sup></i>
* <dt> 2D: <dd> <i> x<sup>0</sup>y<sup>0</sup>,
* x<sup>1</sup>y<sup>0</sup>,...,
* x<sup>n</sup>y<sup>0</sup>,<br>
* x<sup>0</sup>y<sup>1</sup>,
* x<sup>1</sup>y<sup>1</sup>,...,
* x<sup>n-1</sup>y<sup>1</sup>,<br>
* x<sup>0</sup>y<sup>2</sup>,...
* x<sup>n-2</sup>y<sup>2</sup>,<br>...<br>
* x<sup>0</sup>y<sup>n-1</sup>,
* x<sup>1</sup>y<sup>n-1</sup>,<br>
* x<sup>0</sup>y<sup>n</sup>
* </i>
* <dt> 3D: <dd> <i> x<sup>0</sup>y<sup>0</sup>z<sup>0</sup>,...,
* x<sup>n</sup>y<sup>0</sup>z<sup>0</sup>,<br>
* x<sup>0</sup>y<sup>1</sup>z<sup>0</sup>,...,
* x<sup>n-1</sup>y<sup>1</sup>z<sup>0</sup>,<br>...<br>
* x<sup>0</sup>y<sup>n</sup>z<sup>0</sup>,<br>
* x<sup>0</sup>y<sup>0</sup>z<sup>1</sup>,...
* x<sup>n-1</sup>y<sup>0</sup>z<sup>1</sup>,<br>...<br>
* x<sup>0</sup>y<sup>n-1</sup>z<sup>1</sup>,<br>
* x<sup>0</sup>y<sup>0</sup>z<sup>2</sup>,...
* x<sup>n-2</sup>y<sup>0</sup>z<sup>2</sup>,<br>...<br>
* x<sup>0</sup>y<sup>0</sup>z<sup>n</sup>
* </i>
* </dl>
*
* @ingroup Polynomials
* @author Guido Kanschat, Wolfgang Bangerth, Ralf Hartmann 2002, 2003, 2004, 2005
*/
template <int dim>
class PolynomialSpace
{
public:
/**
* Access to the dimension of
* this object, for checking and
* automatic setting of dimension
* in other classes.
*/
static const unsigned int dimension = dim;
/**
* Constructor. <tt>pols</tt> is a
* vector of pointers to
* one-dimensional polynomials
* and will be copied into a
* private member variable. The static
* type of the template argument
* <tt>pols</tt> needs to be
* convertible to
* Polynomials::Polynomial@<double@>,
* i.e. should usually be a
* derived class of
* Polynomials::Polynomial@<double@>.
*/
template <class Pol>
PolynomialSpace (const std::vector<Pol> &pols);
/**
* Prints the list of the indices
* to <tt>out</tt>.
*/
template <class STREAM>
void output_indices(STREAM &out) const;
/**
* Sets the ordering of the
* polynomials. Requires
* <tt>renumber.size()==n()</tt>.
* Stores a copy of
* <tt>renumber</tt>.
*/
void set_numbering(const std::vector<unsigned int> &renumber);
/**
* Computes the value and the
* first and second derivatives
* of each polynomial at
* <tt>unit_point</tt>.
*
* The size of the vectors must
* either be equal 0 or equal
* n(). In the first case,
* the function will not compute
* these values, i.e. you
* indicate what you want to have
* computed by resizing those
* vectors which you want filled.
*
* If you need values or
* derivatives of all polynomials
* then use this function, rather
* than using any of the
* compute_value(),
* compute_grad() or
* compute_grad_grad()
* functions, see below, in a
* loop over all polynomials.
*/
void compute (const Point<dim> &unit_point,
std::vector<double> &values,
std::vector<Tensor<1,dim> > &grads,
std::vector<Tensor<2,dim> > &grad_grads) const;
/**
* Computes the value of the
* <tt>i</tt>th polynomial at
* <tt>unit_point</tt>.
*
* Consider using compute() instead.
*/
double compute_value (const unsigned int i,
const Point<dim> &p) const;
/**
* Computes the gradient of the
* <tt>i</tt>th polynomial at
* <tt>unit_point</tt>.
*
* Consider using compute() instead.
*/
Tensor<1,dim> compute_grad (const unsigned int i,
const Point<dim> &p) const;
/**
* Computes the second derivative
* (grad_grad) of the <tt>i</tt>th
* polynomial at
* <tt>unit_point</tt>.
*
* Consider using compute() instead.
*/
Tensor<2,dim> compute_grad_grad (const unsigned int i,
const Point<dim> &p) const;
/**
* Return the number of
* polynomials spanning the space
* represented by this
* class. Here, if <tt>N</tt> is the
* number of one-dimensional
* polynomials given, then the
* result of this function is
* <i>N</i> in 1d, <i>N(N+1)/2</i> in
* 2d, and <i>N(N+1)(N+2)/6</i> in
* 3d.
*/
unsigned int n () const;
/**
* Degree of the space. This is
* by definition the number of
* polynomials given to the
* constructor, NOT the maximal
* degree of a polynomial in this
* vector. The latter value is
* never checked and therefore
* left to the application.
*/
unsigned int degree () const;
/**
* Static function used in the
* constructor to compute the
* number of polynomials.
*/
static unsigned int compute_n_pols (const unsigned int n);
protected:
/**
* Compute numbers in x, y and z
* direction. Given an index
* <tt>n</tt> in the d-dimensional
* polynomial space, compute the
* indices i,j,k such that
* <i>p<sub>n</sub>(x,y,z) =
* p<sub>i</sub>(x)p<sub>j</sub>(y)p<sub>k</sub>(z)</i>.
*/
void compute_index (const unsigned int n,
unsigned int (&index)[dim>0?dim:1]) const;
private:
/**
* Copy of the vector <tt>pols</tt> of
* polynomials given to the
* constructor.
*/
const std::vector<Polynomials::Polynomial<double> > polynomials;
/**
* Store the precomputed value
* which the <tt>n()</tt> function
* returns.
*/
const unsigned int n_pols;
/**
* Index map for reordering the
* polynomials.
*/
std::vector<unsigned int> index_map;
/**
* Index map for reordering the
* polynomials.
*/
std::vector<unsigned int> index_map_inverse;
};
/* -------------- declaration of explicit specializations --- */
template <>
void PolynomialSpace<1>::compute_index(const unsigned int n,
unsigned int (&index)[1]) const;
template <>
void PolynomialSpace<2>::compute_index(const unsigned int n,
unsigned int (&index)[2]) const;
template <>
void PolynomialSpace<3>::compute_index(const unsigned int n,
unsigned int (&index)[3]) const;
/* -------------- inline and template functions ------------- */
template <int dim>
template <class Pol>
PolynomialSpace<dim>::PolynomialSpace (const std::vector<Pol> &pols)
:
polynomials (pols.begin(), pols.end()),
n_pols (compute_n_pols(polynomials.size())),
index_map(n_pols),
index_map_inverse(n_pols)
{
// per default set this index map
// to identity. This map can be
// changed by the user through the
// set_numbering function
for (unsigned int i=0; i<n_pols; ++i)
{
index_map[i]=i;
index_map_inverse[i]=i;
}
}
template<int dim>
inline
unsigned int
PolynomialSpace<dim>::n() const
{
return n_pols;
}
template<int dim>
inline
unsigned int
PolynomialSpace<dim>::degree() const
{
return polynomials.size();
}
template <int dim>
template <class STREAM>
void
PolynomialSpace<dim>::output_indices(STREAM &out) const
{
unsigned int ix[dim];
for (unsigned int i=0; i<n_pols; ++i)
{
compute_index(i,ix);
out << i << "\t";
for (unsigned int d=0; d<dim; ++d)
out << ix[d] << " ";
out << std::endl;
}
}
DEAL_II_NAMESPACE_CLOSE
#endif
|