This file is indexed.

/usr/include/deal.II/base/template_constraints.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
// ---------------------------------------------------------------------
// $Id: template_constraints.h 30154 2013-07-25 10:53:32Z bangerth $
//
// Copyright (C) 2003 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__template_constraints_h
#define __deal2__template_constraints_h


#include <deal.II/base/config.h>

DEAL_II_NAMESPACE_OPEN

template <bool, typename> struct constraint_and_return_value;


/**
 * This specialization of the general template for the case of a
 * <tt>true</tt> first template argument declares a local typedef <tt>type</tt>
 * to the second template argument. It is used in order to construct
 * constraints on template arguments in template (and member template)
 * functions. The negative specialization is missing.
 *
 * Here's how the trick works, called SFINAE (substitution failure is
 * not an error): The C++ standard prescribes that a template function
 * is only considered in a call, if all parts of its signature can be
 * instantiated with the template parameter replaced by the respective
 * types/values in this particular call. Example:
 * @code
 *   template <typename T>
 *   typename T::type  foo(T) {...};
 *   ...
 *   foo(1);
 * @endcode
 * The compiler should detect that in this call, the template
 * parameter T must be identified with the type "int". However,
 * the return type T::type does not exist. The trick now is
 * that this is not considered an error: this template is simply
 * not considered, the compiler keeps on looking for another
 * possible function foo.
 *
 * The idea is then to make the return type un-instantiatable if
 * certain constraints on the template types are not satisfied:
 * @code
 *   template <bool, typename> struct constraint_and_return_value;
 *   template <typename T> struct constraint_and_return_value<true,T> {
 *     typedef T type;
 *   };
 * @endcode
 * constraint_and_return_value<false,T> is not defined. Given something like
 * @code
 *   template <typename>
 *   struct int_or_double         { static const bool value = false;};
 *   template <>
 *   struct int_or_double<int>    { static const bool value = true; };
 *   template <>
 *   struct int_or_double<double> { static const bool value = true; };
 * @endcode
 * we can write a template
 * @code
 *   template <typename T>
 *   typename constraint_and_return_value<int_or_double<T>::value,void>::type
 *   f (T);
 * @endcode
 * which can only be instantiated if T=int or T=double. A call to
 * f('c') will just fail with a compiler error: "no instance of
 * f(char) found". On the other hand, if the predicate in the first
 * argument to the constraint_and_return_value template is true, then
 * the return type is just the second type in the template.
 *
 * @author Wolfgang Bangerth, 2003
 */
template <typename T> struct constraint_and_return_value<true,T>
{
  typedef T type;
};



/**
 * A template class that simply exports its template argument as a local
 * typedef. This class, while at first appearing useless, makes sense in the
 * following context: if you have a function template as follows:
 * @code
 *   template <typename T> void f(T, T);
 * @endcode
 * then it can't be called in an expression like <code>f(1, 3.141)</code>
 * because the type <code>T</code> of the template can not be deduced
 * in a unique way from the types of the arguments. However, if the
 * template is written as
 * @code
 *   template <typename T> void f(T, typename identity<T>::type);
 * @endcode
 * then the call becomes valid: the type <code>T</code> is not deducible
 * from the second argument to the function, so only the first argument
 * participates in template type resolution.
 *
 * The context for this feature is as follows: consider
 * @code
 * template <typename RT, typename A>
 * void forward_call(RT (*p) (A), A a)  { p(a); }
 *
 * void h (double);
 *
 * void g()
 * {
 *   forward_call(&h, 1);
 * }
 * @endcode
 * This code fails to compile because the compiler can't decide whether the
 * template type <code>A</code> should be <code>double</code> (from the
 * signature of the function given as first argument to
 * <code>forward_call</code>, or <code>int</code> because the expression
 * <code>1</code> has that type. Of course, what we would like the compiler
 * to do is simply cast the <code>1</code> to <code>double</code>. We can
 * achieve this by writing the code as follows:
 * @code
 * template <typename RT, typename A>
 * void forward_call(RT (*p) (A), typename identity<A>::type a)  { p(a); }
 *
 * void h (double);
 *
 * void g()
 * {
 *   forward_call(&h, 1);
 * }
 * @endcode
 *
 * @author Wolfgang Bangerth, 2008
 */
template <typename T>
struct identity
{
  typedef T type;
};



/**
 * A class to perform comparisons of arbitrary pointers for equality. In some
 * circumstances, one would like to make sure that two arguments to a function
 * are not the same object. One would, in this case, make sure that their
 * addresses are not the same. However, sometimes the types of these two
 * arguments may be template types, and they may be the same type or not. In
 * this case, a simple comparison as in <tt>&object1 != &object2</tt> does
 * only work if the types of the two objects are equal, but the compiler will
 * barf if they are not. However, in the latter case, since the types of the
 * two objects are different, we can be sure that the two objects cannot be
 * the same.
 *
 * This class implements a comparison function that always returns @p false if
 * the types of its two arguments are different, and returns <tt>p1 == p2</tt>
 * otherwise.
 *
 * @author Wolfgang Bangerth, 2004
 */
struct PointerComparison
{
  /**
   * Comparison function for pointers of
   * the same type. Returns @p true if the
   * two pointers are equal.
   */
  template <typename T>
  static bool equal (const T *p1, const T *p2);

  /**
   * Comparison function for pointers of
   * different types. The C++ language does
   * not allow comparing these pointers
   * using <tt>operator==</tt>. However,
   * since the two pointers have different
   * types, we know that they can't be the
   * same, so we always return @p false.
   */
  template <typename T, typename U>
  static bool equal (const T *, const U *);
};



namespace internal
{
  /**
   * A type that is sometimes used for template tricks. For example, in
   * some situations one would like to do this:
   *
   * @code
   *   template <int dim>
   *   class X {
   *     // do something on subdim-dimensional sub-objects of the big
   *     // dim-dimensional thing (for example on vertices/lines/quads of
   *     // cells):
   *     template <int subdim> void f();
   *   };
   *
   *   template <int dim>
   *   template <>
   *   void X<dim>::f<0> () { ...operate on the vertices of a cell... }
   *
   *   template <int dim, int subdim> void g(X<dim> &x) {
   *     x.f<subdim> ();
   *   }
   * @endcode
   *
   * The problem is: the language doesn't allow us to specialize
   * <code>X::f()</code> without specializing the outer class first. One
   * of the common tricks is therefore to use something like this:
   *
   * @code
   *   template <int N> struct int2type {};
   *
   *   template <int dim>
   *   class X {
   *     // do something on subdim-dimensional sub-objects of the big
   *     // dim-dimensional thing (for example on vertices/lines/quads of
   *     // cells):
   *     void f(int2type<0>);
   *     void f(int2type<1>);
   *     void f(int2type<2>);
   *     void f(int2type<3>);
   *   };
   *
   *   template <int dim>
   *   void X<dim>::f (int2type<0>) { ...operate on the vertices of a cell... }
   *
   *   template <int dim>
   *   void X<dim>::f (int2type<1>) { ...operate on the lines of a cell... }
   *
   *   template <int dim, int subdim> void g(X<dim> &x) {
   *     x.f (int2type<subdim>());
   *   }
   * @endcode
   *
   * Note that we have replaced specialization of <code>X::f()</code> by
   * overloading, but that from inside the function <code>g()</code>, we
   * can still select which of the different <code>X::f()</code> we want
   * based on the <code>subdim</code> template argument.
   *
   * @author Wolfgang Bangerth, 2006
   */
  template <int N>
  struct int2type
  {};


  /**
   * The equivalent of the int2type class for boolean arguments.
   *
   * @author Wolfgang Bangerth, 2009
   */
  template <bool B>
  struct bool2type
  {};
}



/**
 * A type that can be used to determine whether two types are equal.
 * It allows to write code like
 * @code
 *   template <typename T>
 *   void Vector<T>::some_operation () {
 *     if (types_are_equal<T,double>::value == true)
 *       call_some_blas_function_for_doubles;
 *     else
 *       do_it_by_hand;
 *   }
 * @endcode
 *
 * This construct is made possible through the existence of a partial
 * specialization of the class for template arguments that are equal.
 */
template <typename T, typename U>
struct types_are_equal
{
  static const bool value = false;
};


/**
 * Partial specialization of the general template for the case that
 * both template arguments are equal. See the documentation of the
 * general template for more information.
 */
template <typename T>
struct types_are_equal<T,T>
{
  static const bool value = true;
};



// --------------- inline functions -----------------


template <typename T, typename U>
inline
bool
PointerComparison::equal (const T *, const U *)
{
  return false;
}



template <typename T>
inline
bool
PointerComparison::equal (const T *p1, const T *p2)
{
  return (p1==p2);
}



DEAL_II_NAMESPACE_CLOSE

#endif