This file is indexed.

/usr/include/deal.II/base/work_stream.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
// ---------------------------------------------------------------------
// $Id: work_stream.h 31932 2013-12-08 02:15:54Z heister $
//
// Copyright (C) 2008 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__work_stream_h
#define __deal2__work_stream_h


#include <deal.II/base/config.h>
#include <deal.II/base/graph_coloring.h>
#include <deal.II/base/multithread_info.h>
#include <deal.II/base/thread_management.h>
#include <deal.II/base/template_constraints.h>
#include <deal.II/base/std_cxx1x/function.h>
#include <deal.II/base/std_cxx1x/bind.h>
#include <deal.II/base/thread_local_storage.h>

#ifdef DEAL_II_WITH_THREADS
#  include <deal.II/base/thread_management.h>
#  include <tbb/pipeline.h>
#endif

#include <vector>
#include <utility>
#include <memory>


DEAL_II_NAMESPACE_OPEN



/**
 * A namespace whose main template function supports running multiple
 * threads each of which operates on a subset of the given range of
 * objects. The class uses the Intel Threading Building Blocks (TBB)
 * to load balance the individual subranges onto the available
 * threads. For a lengthy discussion of the rationale of this class,
 * see the @ref threads "Parallel computing with multiple processors"
 * module. It is used in the tutorial first in step-9, and again in
 * step-13, step-14, step-32 and others.
 *
 * The class is built on the following premise: One frequently has some work
 * that needs to be done on a sequence of objects; a prototypical example is
 * assembling cell contributions to a system matrix or right hand side. In
 * many such examples, part of the work can be done entirely independently and
 * in parallel, possibly using several processor cores on a machine with
 * shared memory. However, some other part of this work may need to be
 * synchronised and be done in order. In the example of assembling a matrix,
 * the computation of local contributions can be done entirely in parallel,
 * but copying the local contributions into the global matrix requires
 * some care: First, several threads can't write at the same time, but need to
 * synchronise writing using a mutex; secondly, we want the order in which
 * local contributions are added to the global matrix to be always the same
 * because floating point addition is not commutative and adding local
 * contributions to the global matrix in different orders leads to subtly
 * different results that can affect the number of iterations for iterative
 * solvers as well as the round-off error in the solution in random
 * ways. Consequently, we want to ensure that only one thread at a time writes
 * into the global matrix, and that results are copied in a stable and
 * reproducible order.
 *
 * This class implements a framework for this work model. It works with a
 * stream of objects given by an iterator range, runs a worker function in
 * parallel on all of these objects and then passes each object to a
 * postprocessor function that runs sequentially and gets objects in exactly
 * the order in which they appear in the input iterator range. None of the
 * synchronisation work is exposed to the user of this class.
 *
 * Internally, the range given to the run() function of this class is split
 * into a sequence of "items", which are then distributed according to some
 * %internal algorithm onto the number of available threads. An item is an
 * element of the range of iterators on which we are to operate; for example,
 * for the purpose of assembling matrices or evaluating error indicators, an
 * item could be a cell. The TBB library determines how many threads are
 * created (typically as many as there are processor cores), but the number of
 * items that may be active at any given time is specified by the argument to
 * the constructor. It should be bigger or equal to the number of processor
 * cores - the default is four times the number of cores on the current system.
 *
 * Items are created upon request by the TBB whenever one of the worker
 * threads is idle or is expected to become idle. It is then handed off to a
 * worker function, typically a member function of a main class. These worker
 * functions are run in parallel on a number of threads, and there is no
 * guarantee that they are asked to work on items in any particular order, in
 * particular not necessarily in the order in which items are generated from
 * the iterator range.
 *
 * Typically, worker functions need additional data, for example FEValues
 * objects, input data vectors, etc, some of which can not be shared among
 * threads. To this end, the run() function takes another template argument,
 * ScratchData, which designates a type objects of which are stored with
 * each item and which threads can use as private data without having to
 * share them with other threads. The run() function takes an additional
 * argument with an object of type ScratchData that is going to be copied
 * for the arguments passed to each of the worker functions.
 *
 * In addition, worker functions store their results in objects of template type
 * CopyData. These are then handed off to a separate function, called copier,
 * that may use the stored results to transfer them into permanent
 * storage. For example, it may copy the results of local contributions to a
 * matrix computed by a worker function into the global matrix. In contrast to
 * the worker function, however, only one instance of the copier is run at any
 * given time; it can therefore safely copy local contributions into the
 * global matrix without the need to lock the global object using a mutex or
 * similar means. Furthermore, it is guaranteed that the copier is run with
 * CopyData objects in the same order in which their associated items
 * were created; consequently, even if worker threads may compute results in
 * unspecified order, the copier always receives the results in exactly the
 * same order as the items were created.
 *
 * Once an item is processed by the copier, it is deleted and the
 * ScratchData and CopyData objects that were used in its computation
 * are considered unused and may be re-used for the next invokation of
 * the worker function, on this or another thread.
 *
 * The functions in this namespace only really work in parallel when
 * multithread mode was selected during deal.II configuration. Otherwise they
 * simply work on each item sequentially.
 *
 * @ingroup threads
 * @author Wolfgang Bangerth, 2007, 2008, 2009, 2013. Bruno Turcksin, 2013.
 */
namespace WorkStream
{

#ifdef DEAL_II_WITH_THREADS

  namespace internal
  {

//TODO: The following classes all use std_cxx1x::shared_ptr, but the
//  correct pointer class would actually be std::unique_ptr. make this
//  replacement whenever we have a class that provides these semantics
//  and that is available also as a fall-back whenever via boost or similar

    /**
     * A namespace for the implementation of details of the WorkStream pattern
     * and function. This namespace holds classes that deal with the second
     * implementation described in the paper by Turcksin, Kronbichler and
     * Bangerth (see @ref workstream_paper).
     *
     * Even though this implementation is slower than the third implementation
     * discussed in that paper, we need to keep it around for two reasons:
     * (i) a user may not give us a graph coloring, (ii) we want to use
     * this implementation for colors that are just too small.
     */
    namespace Implementation2
    {
      /**
       * A class that creates a sequence of items from a range of iterators.
       */
      template <typename Iterator,
                typename ScratchData,
                typename CopyData>
      class IteratorRangeToItemStream : public tbb::filter
      {
      public:
        /**
         * A data type that we use to identify items to be worked on. This is
         * the structure that is passed around between the different parts of
         * the WorkStream implementation to identify what needs to be done by
         * the various stages of the pipeline.
         */
        struct ItemType
        {
          /**
           * A structure that contains a pointer to a scratch data object along
           * with a flag that indicates whether this object is currently in use.
           */
          struct ScratchDataObject
          {
            std_cxx1x::shared_ptr<ScratchData> scratch_data;
            bool                               currently_in_use;

            /**
             * Default constructor.
             */
            ScratchDataObject ()
              :
              currently_in_use (false)
            {}

            ScratchDataObject (ScratchData *p,
                               const bool in_use)
              :
              scratch_data (p),
              currently_in_use (in_use)
            {}

//TODO: when we push back an object to the list of scratch objects, in
//  Worker::operator(), we first create an object and then copy
//  it to the end of this list. this involves having two objects
//      of the current type having pointers to it, each with their own
//      currently_in_use flag. there is probably little harm in this because
//      the original one goes out of scope right away again, but it's
//      certainly awkward. one way to avoid this would be to use unique_ptr
//      but we'd need to figure out a way to use it in non-C++11 mode
            ScratchDataObject (const ScratchDataObject &o)
              :
              scratch_data (o.scratch_data),
              currently_in_use (o.currently_in_use)
            {}
          };


          /**
           * Typedef to a list of scratch data objects. The rationale for this
           * list is provided in the variables that use these lists.
           */
          typedef std::list<ScratchDataObject> ScratchDataList;

          /**
           * A list of iterators that need to be worked on. Only the first
           * n_items are relevant.
           */
          std::vector<Iterator> work_items;

          /**
           * The CopyData objects that the Worker part of the pipeline
           * fills for each work item. Again, only the first n_items
           * elements are what we care about.
           */
          std::vector<CopyData> copy_datas;

          /**
           * Number of items identified by the work_items array that the
           * Worker and Copier pipeline stage need to work on. The maximum
           * value of this variable will be chunk_size.
           */
          unsigned int          n_items;

          /**
           * Pointer to a thread local variable identifying the scratch data objects
           * this thread will use. The initial implementation of this
           * class using thread local variables provided only a single
           * scratch object per thread. This doesn't work, because
           * the worker functions may start tasks itself and then call
           * Threads::TaskGroup::join_all() or a similar function, which the
           * TBB scheduler may use to run something else on the current
           * thread -- for example another instance of the worker function.
           * Consequently, there would be two instances of the worker
           * function that use the same scratch object if we only
           * provided a single scratch object per thread. The solution is
           * to provide a list of scratch objects for each thread, together
           * with a flag indicating whether this scratch object is currently
           * used. If a thread needs a scratch object, it walks this list
           * until it finds an unused object, or, if there is none, creates one
           * itself. Note that we need not use synchronization primitives
           * for this process since the lists are thread-local and
           * we are guaranteed that only a single thread accesses them as long
           * as we have no yield point in between the accesses to the list.
           *
           * The pointers to scratch objects stored in each of these lists must
           * be so that they are deleted on all threads when the thread
           * local object is destroyed. This is achieved by using shared_ptr.
           *
           * Note that when a worker needs to create a scratch object, it allocates
           * it using sample_scratch_data to copy from. This has
           * the advantage of a first-touch initialization, i.e., the
           * memory for the scratch data object is allocated and initialized
           * by the same thread that will later use it.
           */
          Threads::ThreadLocalStorage<ScratchDataList> *scratch_data;

          /**
           * Pointer to a sample scratch data object, to be used to initialize
           * the scratch data objects created for each individual thread.
           */
          const ScratchData *sample_scratch_data;

          /**
           * Flag is true if the buffer is used and false if the buffer can be
           * used.
           */
          bool currently_in_use;


          /**
           * Default constructor.
           * Initialize everything that doesn't have a default constructor
           * itself.
           */
          ItemType ()
            :
            n_items (0),
            scratch_data (0),
            sample_scratch_data (0),
            currently_in_use (false)
          {}
        };


        /**
         * Constructor. Take an iterator range, the size of a buffer that can
         * hold items, and the sample additional data object that will be passed
         * to each worker and copier function invokation.
         */
        IteratorRangeToItemStream (const Iterator       &begin,
                                   const Iterator       &end,
                                   const unsigned int    buffer_size,
                                   const unsigned int    chunk_size,
                                   const ScratchData    &sample_scratch_data,
                                   const CopyData       &sample_copy_data)
          :
          tbb::filter (/*is_serial=*/true),
          remaining_iterator_range (begin, end),
          item_buffer (buffer_size),
          sample_scratch_data (sample_scratch_data),
          chunk_size (chunk_size)
        {
          // initialize the elements of the ring buffer
          for (unsigned int element=0; element<item_buffer.size(); ++element)
            {
              Assert (item_buffer[element].n_items == 0,
                      ExcInternalError());

              item_buffer[element].work_items.resize (chunk_size,
                                                      remaining_iterator_range.second);
              item_buffer[element].scratch_data = &thread_local_scratch;
              item_buffer[element].sample_scratch_data = &sample_scratch_data;
              item_buffer[element].copy_datas.resize (chunk_size,
                                                      sample_copy_data);
              item_buffer[element].currently_in_use = false;
            }
        }


        /**
         * Create an item and return a
         * pointer to it.
         */
        virtual void *operator () (void *)
        {
          // find first unused item. we know that there must be one
          // because we have set the maximal number of tokens in flight
          // and have set the ring buffer to have exactly this size. so
          // if this function is called, we know that less than the
          // maximal number of items in currently in flight
          ItemType *current_item = 0;
          for (unsigned int i=0; i<item_buffer.size(); ++i)
            if (item_buffer[i].currently_in_use == false)
              {
                item_buffer[i].currently_in_use = true;
                current_item = &item_buffer[i];
                break;
              }
          Assert (current_item != 0, ExcMessage ("This can't be. There must be a free item!"));

          // initialize the next item. it may
          // consist of at most chunk_size
          // elements
          current_item->n_items = 0;
          while ((remaining_iterator_range.first !=
                  remaining_iterator_range.second)
                 &&
                 (current_item->n_items < chunk_size))
            {
              current_item->work_items[current_item->n_items]
                = remaining_iterator_range.first;

              ++remaining_iterator_range.first;
              ++current_item->n_items;
            }

          if (current_item->n_items == 0)
            // there were no items
            // left. terminate the pipeline
            return 0;
          else
            return current_item;
        }

      private:
        /**
         * The interval of iterators still to
         * be worked on. This range will shrink
         * over time.
         */
        std::pair<Iterator,Iterator> remaining_iterator_range;

        /**
         * A buffer that will store items.
         */
        std::vector<ItemType>        item_buffer;

        /**
         * Pointer to a thread local variable identifying the scratch data objects
         * this thread will use. The initial implementation of this
         * class using thread local variables provided only a single
         * scratch object per thread. This doesn't work, because
         * the worker functions may start tasks itself and then call
         * Threads::TaskGroup::join_all() or a similar function, which the
         * TBB scheduler may use to run something else on the current
         * thread -- for example another instance of the worker function.
         * Consequently, there would be two instances of the worker
         * function that use the same scratch object if we only
         * provided a single scratch object per thread. The solution is
         * to provide a list of scratch objects for each thread, together
         * with a flag indicating whether this scratch object is currently
         * used. If a thread needs a scratch object, it walks this list
         * until it finds an unused object, or, if there is none, creates one
         * itself. Note that we need not use synchronization primitives
         * for this process since the lists are thread-local and
         * we are guaranteed that only a single thread accesses them as long
         * as we have no yield point in between the accesses to the list.
         *
         * The pointers to scratch objects stored in each of these lists must
         * be so that they are deleted on all threads when the thread
         * local object is destroyed. This is achieved by using shared_ptr.
         *
         * Note that when a worker needs to create a scratch object, it allocates
         * it using sample_scratch_data to copy from. This has
         * the advantage of a first-touch initialization, i.e., the
         * memory for the scratch data object is allocated and initialized
         * by the same thread that will later use it.
         */
        Threads::ThreadLocalStorage<typename ItemType::ScratchDataList> thread_local_scratch;

        /**
         * A reference to a sample scratch data that will be used to
         * initialize the thread-local pointers to a scratch data object
         * each of the worker tasks uses.
         */
        const ScratchData &sample_scratch_data;

        /**
         * Number of elements of the
         * iterator range that each
         * thread should work on
         * sequentially; a large number
         * makes sure that each thread
         * gets a significant amount of
         * work before the next task
         * switch happens, whereas a
         * small number is better for
         * load balancing.
         */
        const unsigned int           chunk_size;

        /**
         * Initialize the pointers and vector
         * elements in the specified entry of
         * the item_buffer.
         */
        void init_buffer_elements (const unsigned int element,
                                   const CopyData    &sample_copy_data)
        {
          Assert (item_buffer[element].n_items == 0,
                  ExcInternalError());

          item_buffer[element].work_items
          .resize (chunk_size, remaining_iterator_range.second);
          item_buffer[element].scratch_data
            = &thread_local_scratch;
          item_buffer[element].sample_scratch_data
            = &sample_scratch_data;
          item_buffer[element].copy_datas
          .resize (chunk_size, sample_copy_data);
        }
      };



      /**
       * A class that manages calling the
       * worker function on a number of
       * parallel threads. Note that it is, in
       * the TBB notation, a filter that can
       * run in parallel.
       */
      template <typename Iterator,
                typename ScratchData,
                typename CopyData>
      class Worker : public tbb::filter
      {
      public:
        /**
         * Constructor. Takes a
         * reference to the object on
         * which we will operate as
         * well as a pointer to the
         * function that will do the
         * assembly.
         */
        Worker (const std_cxx1x::function<void (const Iterator &,
                                                ScratchData &,
                                                CopyData &)> &worker,
                bool copier_exist=true)
          :
          tbb::filter (/* is_serial= */ false),
          worker (worker),
          copier_exist (copier_exist)
        {}


        /**
         * Work on an item.
         */
        void *operator () (void *item)
        {
          // first unpack the current item
          typedef
          typename IteratorRangeToItemStream<Iterator,ScratchData,CopyData>::ItemType
          ItemType;

          ItemType *current_item = static_cast<ItemType *> (item);

          // we need to find an unused scratch data object in the list that
          // corresponds to the current thread and then mark it as used. if
          // we can't find one, create one
          //
          // as discussed in the discussion of the documentation of the
          // IteratorRangeToItemStream::scratch_data variable, there is no
          // need to synchronize access to this variable using a mutex
          // as long as we have no yield-point in between. this means that
          // we can't take an iterator into the list now and expect it to
          // still be valid after calling the worker, but we at least do
          // not have to lock the following section
          ScratchData *scratch_data = 0;
          {
            typename ItemType::ScratchDataList &
            scratch_data_list = current_item->scratch_data->get();

            // see if there is an unused object. if so, grab it and mark
            // it as used
            for (typename ItemType::ScratchDataList::iterator
                 p = scratch_data_list.begin();
                 p != scratch_data_list.end(); ++p)
              if (p->currently_in_use == false)
                {
                  scratch_data = p->scratch_data.get();
                  p->currently_in_use = true;
                  break;
                }

            // if no object was found, create one and mark it as used
            if (scratch_data == 0)
              {
                scratch_data = new ScratchData(*current_item->sample_scratch_data);

                typename ItemType::ScratchDataList::value_type
                new_scratch_object (scratch_data, true);
                scratch_data_list.push_back (new_scratch_object);
              }
          }

          // then call the worker function on each element of the chunk we were
          // given. since these worker functions are called on separate threads,
          // nothing good can happen if they throw an exception and we are best
          // off catching it and showing an error message
          for (unsigned int i=0; i<current_item->n_items; ++i)
            {
              try
                {
                  if (worker)
                    worker (current_item->work_items[i],
                            *scratch_data,
                            current_item->copy_datas[i]);
                }
              catch (const std::exception &exc)
                {
                  Threads::internal::handle_std_exception (exc);
                }
              catch (...)
                {
                  Threads::internal::handle_unknown_exception ();
                }
            }

          // finally mark the scratch object as unused again. as above, there
          // is no need to lock anything here since the object we work on
          // is thread-local
          {
            typename ItemType::ScratchDataList &
            scratch_data_list = current_item->scratch_data->get();

            for (typename ItemType::ScratchDataList::iterator p =
                   scratch_data_list.begin(); p != scratch_data_list.end();
                 ++p)
              if (p->scratch_data.get() == scratch_data)
                {
                  Assert(p->currently_in_use == true, ExcInternalError());
                  p->currently_in_use = false;
                }
          }

          // if there is no copier, mark current item as usable again
          if (copier_exist==false)
            current_item->currently_in_use = false;


          // then return the original pointer
          // to the now modified object
          return item;
        }


      private:
        /**
         * Pointer to the function
         * that does the assembling
         * on the sequence of cells.
         */
        const std_cxx1x::function<void (const Iterator &,
                                        ScratchData &,
                                        CopyData &)> worker;

        /**
         * This flag is true if the copier stage exist. If it does not,
         * the worker has to free the buffer. Otherwise the copier will do it.
         */
        bool copier_exist;
      };



      /**
       * A class that manages calling the
       * copier function. Note that it is, in
       * the TBB notation, a filter that runs
       * sequentially, ensuring that all items
       * are copied in the same order in which
       * they are created.
       */
      template <typename Iterator,
                typename ScratchData,
                typename CopyData>
      class Copier : public tbb::filter
      {
      public:
        /**
         * Constructor. Takes a
         * reference to the object on
         * which we will operate as
         * well as a pointer to the
         * function that will do the
         * copying from the
         * additional data object to
         * the global matrix or
         * similar.
         */
        Copier (const std_cxx1x::function<void (const CopyData &)> &copier)
          :
          tbb::filter (/*is_serial=*/true),
          copier (copier)
        {}


        /**
         * Work on a single item.
         */
        void *operator () (void *item)
        {
          // first unpack the current item
          typedef
          typename IteratorRangeToItemStream<Iterator,ScratchData,CopyData>::ItemType
          ItemType;

          ItemType *current_item = static_cast<ItemType *> (item);

          // initiate copying data. for the same reasons as in the worker class
          // above, catch exceptions rather than letting it propagate into
          // unknown territories
          for (unsigned int i=0; i<current_item->n_items; ++i)
            {
              try
                {
                  if (copier)
                    copier (current_item->copy_datas[i]);
                }
              catch (const std::exception &exc)
                {
                  Threads::internal::handle_std_exception (exc);
                }
              catch (...)
                {
                  Threads::internal::handle_unknown_exception ();
                }
            }

          // mark current item as useable again
          current_item->currently_in_use = false;


          // return an invalid item since we are at the end of the
          // pipeline
          return 0;
        }


      private:
        /**
         * Pointer to the function that does the copying of data.
         */
        const std_cxx1x::function<void (const CopyData &)> copier;
      };

    }


    /**
     * A namespace for the implementation of details of the WorkStream pattern
     * and function. This namespace holds classes that deal with the third
     * implementation described in the paper by Turcksin, Kronbichler and
     * Bangerth (see @ref workstream_paper).
     */
    namespace Implementation3
    {
      /**
       * A class that creates a sequence of items from a range of iterators.
       */
      template <typename Iterator,
                typename ScratchData,
                typename CopyData>
      class IteratorRangeToItemStream : public tbb::filter
      {
      public:
        /**
         * A data type that we use to identify items to be worked on. This is
         * the structure that is passed around between the different parts of
         * the WorkStream implementation to identify what needs to be done by
         * the various stages of the pipeline.
         */
        struct ItemType
        {
          /**
           * A structure that contains a pointer to scratch and copy data objects along
           * with a flag that indicates whether this object is currently in use.
           */
          struct ScratchAndCopyDataObjects
          {
            std_cxx1x::shared_ptr<ScratchData> scratch_data;
            std_cxx1x::shared_ptr<CopyData>    copy_data;
            bool                               currently_in_use;

            /**
             * Default constructor.
             */
            ScratchAndCopyDataObjects ()
              :
              currently_in_use (false)
            {}

            ScratchAndCopyDataObjects (ScratchData *p,
                                       CopyData *q,
                                       const bool in_use)
              :
              scratch_data (p),
              copy_data (q),
              currently_in_use (in_use)
            {}

//TODO: when we push back an object to the list of scratch objects, in
//      Worker::operator(), we first create an object and then copy
//      it to the end of this list. this involves having two objects
//      of the current type having pointers to it, each with their own
//      currently_in_use flag. there is probably little harm in this because
//      the original one goes out of scope right away again, but it's
//      certainly awkward. one way to avoid this would be to use unique_ptr
//      but we'd need to figure out a way to use it in non-C++11 mode
            ScratchAndCopyDataObjects (const ScratchAndCopyDataObjects &o)
              :
              scratch_data (o.scratch_data),
              copy_data (o.copy_data),
              currently_in_use (o.currently_in_use)
            {}
          };


          /**
           * Typedef to a list of scratch data objects. The rationale for this
           * list is provided in the variables that use these lists.
           */
          typedef std::list<ScratchAndCopyDataObjects> ScratchAndCopyDataList;

          /**
           * A list of iterators that need to be worked on. Only the first
           * n_items are relevant.
           */
          std::vector<Iterator> work_items;

          /**
           * Number of items identified by the work_items array that the
           * Worker and Copier pipeline stage need to work on. The maximum
           * value of this variable will be chunk_size.
           */
          unsigned int          n_items;

          /**
           * Pointer to a thread local variable identifying the scratch
           * and copy data objects this thread will use. The same considerations
           * apply as documented in the Implementation2::IteratorRangeToItemStream
           * class as well as in the paper by Turcksin, Kronbichler and Bangerth
          * (see @ref workstream_paper).
           */
          Threads::ThreadLocalStorage<ScratchAndCopyDataList> *scratch_and_copy_data;

          /**
           * Pointer to a sample scratch data object, to be used to initialize
           * the scratch data objects created for each individual thread.
           */
          const ScratchData *sample_scratch_data;

          /**
           * Pointer to a sample copy data object.
           */
          const CopyData *sample_copy_data;

          /**
           * Flag is true if the buffer is used and false if the buffer can be
           * used.
           */
          bool currently_in_use;

          /**
           * Default constructor.
           * Initialize everything that doesn't have a default constructor
           * itself.
           */
          ItemType ()
            :
            n_items (0),
            sample_scratch_data (0),
            sample_copy_data (0),
            currently_in_use (false)
          {}
        };


        /**
         * Constructor. Take range of iterators into an array of the kind of object we
         * want to loop over, the size of a buffer that can
         * hold items, and the sample additional data object that will be passed
         * to each worker and copier function invokation.
         */
        IteratorRangeToItemStream (const typename std::vector<Iterator>::const_iterator &begin,
                                   const typename std::vector<Iterator>::const_iterator &end,
                                   const unsigned int    buffer_size,
                                   const unsigned int    chunk_size,
                                   const ScratchData    &sample_scratch_data,
                                   const CopyData       &sample_copy_data)
          :
          tbb::filter (/*is_serial=*/true),
          remaining_iterator_range (begin, end),
          item_buffer (buffer_size),
          sample_scratch_data (sample_scratch_data),
          sample_copy_data (sample_copy_data),
          chunk_size (chunk_size)
        {
          Assert (begin != end, ExcMessage ("This class is not prepared to deal with empty ranges!"));
          // initialize the elements of the item_buffer
          for (unsigned int element=0; element<item_buffer.size(); ++element)
            {
              Assert (item_buffer[element].n_items == 0,
                      ExcInternalError());

              // resize the item_buffer. we have to initialize the new
              // elements with something and because we can't rely on there
              // being a default constructor for 'Iterator', we take the first
              // element in the range [begin,end) pointed to.
              item_buffer[element].work_items.resize (chunk_size,*begin);
              item_buffer[element].scratch_and_copy_data = &thread_local_scratch_and_copy;
              item_buffer[element].sample_scratch_data = &sample_scratch_data;
              item_buffer[element].sample_copy_data = &sample_copy_data;
              item_buffer[element].currently_in_use = false;
            }
        }


        /**
         * Create an item and return a
         * pointer to it.
         */
        virtual void *operator () (void *)
        {
          // find first unused item. we know that there must be one
          // because we have set the maximal number of tokens in flight
          // and have set the ring buffer to have exactly this size. so
          // if this function is called, we know that less than the
          // maximal number of items in currently in flight
          ItemType *current_item = 0;
          for (unsigned int i=0; i<item_buffer.size(); ++i)
            if (item_buffer[i].currently_in_use == false)
              {
                item_buffer[i].currently_in_use = true;
                current_item = &item_buffer[i];
                break;
              }
          Assert (current_item != 0, ExcMessage ("This can't be. There must be a free item!"));


          // initialize the next item. it may
          // consist of at most chunk_size
          // elements
          current_item->n_items = 0;
          while ((remaining_iterator_range.first !=
                  remaining_iterator_range.second)
                 &&
                 (current_item->n_items < chunk_size))
            {
              // initialize the iterators to work on with the elements
              // of the vector that remaining_iterator_range
              // points into
              current_item->work_items[current_item->n_items]
                = *remaining_iterator_range.first;

              ++remaining_iterator_range.first;
              ++current_item->n_items;
            }

          if (current_item->n_items == 0)
            // there were no items
            // left. terminate the pipeline
            return 0;
          else
            return current_item;
        }

      private:
        /**
         * The interval of iterators still to
         * be worked on. This range will shrink
         * over time.
         */
        std::pair<typename std::vector<Iterator>::const_iterator,typename std::vector<Iterator>::const_iterator> remaining_iterator_range;

        /**
         * A buffer that will store items.
         */
        std::vector<ItemType>        item_buffer;

        /**
         * Pointer to a thread local variable identifying the scratch and
         * copy data objects each thread will use. The same is true as
         * discussed for the implementation in the
         * Implementation2::IteratorRangeToItemStream class and the paper
         * by Turcksin, Kronbichler and Bangerth (see @ref workstream_paper).
         */
        Threads::ThreadLocalStorage<typename ItemType::ScratchAndCopyDataList> thread_local_scratch_and_copy;

        /**
         * A reference to a sample scratch data that will be used to
         * initialize the thread-local pointers to a scratch data object
         * each of the worker tasks uses.
         */
        const ScratchData &sample_scratch_data;

        /**
         * A reference to a sample scratch data that will be used to
         * initialize the thread-local pointers to a scratch data object
         * each of the worker tasks uses.
         */
        const CopyData &sample_copy_data;

        /**
         * Number of elements of the
         * iterator range that each
         * thread should work on
         * sequentially; a large number
         * makes sure that each thread
         * gets a significant amount of
         * work before the next task
         * switch happens, whereas a
         * small number is better for
         * load balancing.
         */
        const unsigned int           chunk_size;

        /**
         * Initialize the pointers and vector
         * elements in the specified entry of
         * the item_buffer.
         */
        void init_buffer_elements (const unsigned int element)
        {
          Assert (item_buffer[element].n_items == 0,
                  ExcInternalError());

          item_buffer[element].work_items
          .resize (chunk_size, remaining_iterator_range.second);
          item_buffer[element].scratch_and_copy_data
            = &thread_local_scratch_and_copy;
          item_buffer[element].sample_scratch_data
            = &sample_scratch_data;
          item_buffer[element].sample_copy_data
            = &sample_copy_data;
        }
      };



      /**
       * A class that manages calling the
       * worker function on a number of
       * parallel threads. Note that it is, in
       * the TBB notation, a filter that can
       * run in parallel.
       */
      template <typename Iterator,
                typename ScratchData,
                typename CopyData>
      class WorkerAndCopier : public tbb::filter
      {
      public:
        /**
         * Constructor. Takes a
         * reference to the object on
         * which we will operate as
         * well as a pointer to the
         * function that will do the
         * assembly.
         */
        WorkerAndCopier (const std_cxx1x::function<void (const Iterator &,
                                                         ScratchData &,
                                                         CopyData &)> &worker,
                         const std_cxx1x::function<void (const CopyData &)> &copier)
          :
          tbb::filter (/* is_serial= */ false),
          worker (worker),
          copier (copier)
        {}


        /**
         * Work on an item.
         */
        void *operator () (void *item)
        {
          // first unpack the current item
          typedef
          typename IteratorRangeToItemStream<Iterator,ScratchData,CopyData>::ItemType
          ItemType;

          ItemType *current_item = static_cast<ItemType *> (item);

          // we need to find an unused scratch and corresponding copy
          // data object in the list that
          // corresponds to the current thread and then mark it as used. if
          // we can't find one, create one
          //
          // as discussed in the discussion of the documentation of the
          // IteratorRangeToItemStream::scratch_data variable, there is no
          // need to synchronize access to this variable using a mutex
          // as long as we have no yield-point in between. this means that
          // we can't take an iterator into the list now and expect it to
          // still be valid after calling the worker, but we at least do
          // not have to lock the following section
          ScratchData *scratch_data = 0;
          CopyData    *copy_data    = 0;
          {
            typename ItemType::ScratchAndCopyDataList &
            scratch_and_copy_data_list = current_item->scratch_and_copy_data->get();

            // see if there is an unused object. if so, grab it and mark
            // it as used
            for (typename ItemType::ScratchAndCopyDataList::iterator
                 p = scratch_and_copy_data_list.begin();
                 p != scratch_and_copy_data_list.end(); ++p)
              if (p->currently_in_use == false)
                {
                  scratch_data = p->scratch_data.get();
                  copy_data    = p->copy_data.get();
                  p->currently_in_use = true;
                  break;
                }

            // if no element in the list was found, create one and mark it as used
            if (scratch_data == 0)
              {
                Assert (copy_data==0, ExcInternalError());
                scratch_data = new ScratchData(*current_item->sample_scratch_data);
                copy_data    = new CopyData(*current_item->sample_copy_data);

                typename ItemType::ScratchAndCopyDataList::value_type
                new_scratch_object (scratch_data, copy_data, true);
                scratch_and_copy_data_list.push_back (new_scratch_object);
              }
          }

          // then call the worker and copier function on each element of the chunk we were
          // given. since these functions are called on separate threads,
          // nothing good can happen if they throw an exception and we are best
          // off catching it and showing an error message
          for (unsigned int i=0; i<current_item->n_items; ++i)
            {
              try
                {
                  if (worker)
                    worker (current_item->work_items[i],
                            *scratch_data,
                            *copy_data);
                  if (copier)
                    copier (*copy_data);
                }
              catch (const std::exception &exc)
                {
                  Threads::internal::handle_std_exception (exc);
                }
              catch (...)
                {
                  Threads::internal::handle_unknown_exception ();
                }
            }

          // finally mark the scratch object as unused again. as above, there
          // is no need to lock anything here since the object we work on
          // is thread-local
          {
            typename ItemType::ScratchAndCopyDataList &
            scratch_and_copy_data_list = current_item->scratch_and_copy_data->get();

            for (typename ItemType::ScratchAndCopyDataList::iterator p =
                   scratch_and_copy_data_list.begin(); p != scratch_and_copy_data_list.end();
                 ++p)
              if (p->scratch_data.get() == scratch_data)
                {
                  Assert(p->currently_in_use == true, ExcInternalError());
                  p->currently_in_use = false;
                }
          }

          // mark current item as usable again
          current_item->currently_in_use = false;

          // return an invalid item since we are at the end of the
          // pipeline
          return 0;
        }


      private:
        /**
         * Pointer to the function
         * that does the assembling
         * on the sequence of cells.
         */
        const std_cxx1x::function<void (const Iterator &,
                                        ScratchData &,
                                        CopyData &)> worker;

        /**
         * Pointer to the function that does the copying from
         * local contribution to global object.
         */
        const std_cxx1x::function<void (const CopyData &)> copier;
      };
    }
  }

#endif // DEAL_II_WITH_THREADS



  /**
   * This is one of two main functions of the WorkStream concept, doing work as
   * described in the introduction to this namespace. It corresponds to
   * implementation 2 of the paper by Turcksin, Kronbichler and Bangerth
   * (see @ref workstream_paper).
   *
   * This function that can be used for worker and copier objects that
   * are either pointers to non-member functions or objects that allow to be
   * called with an operator(), for example objects created by std::bind. If
   * the copier is an empty function, it is ignored in the pipeline.
   *
   * The argument passed as @p end must be convertible to the same type as @p
   * begin, but doesn't have to be of the same type itself. This allows to
   * write code like <code>WorkStream().run(dof_handler.begin_active(),
   * dof_handler.end(), ...</code> where the first is of type
   * DoFHandler::active_cell_iterator whereas the second is of type
   * DoFHandler::raw_cell_iterator.
   *
   * The two data types <tt>ScratchData</tt> and <tt>CopyData</tt> need to
   * have a working copy constructor. <tt>ScratchData</tt> is only used in the
   * <tt>worker</tt> function, while <tt>CopyData</tt> is the object passed
   * from the <tt>worker</tt> to the <tt>copier</tt>.
   *
   * The @p queue_length argument indicates the number of items that can be
   * live at any given time. Each item consists of @p chunk_size elements of
   * the input stream that will be worked on by the worker and copier
   * functions one after the other on the same thread.
   *
   * @note If your data objects are large, or their constructors are
   * expensive, it is helpful to keep in mind that <tt>queue_length</tt>
   * copies of the <tt>ScratchData</tt> object and
   * <tt>queue_length*chunk_size</tt> copies of the <tt>CopyData</tt> object
   * are generated.
   */
  template <typename Worker,
            typename Copier,
            typename Iterator,
            typename ScratchData,
            typename CopyData>
  void
  run (const Iterator                          &begin,
       const typename identity<Iterator>::type &end,
       Worker                                   worker,
       Copier                                   copier,
       const ScratchData                       &sample_scratch_data,
       const CopyData                          &sample_copy_data,
       const unsigned int queue_length = 2*multithread_info.n_threads(),
       const unsigned int                       chunk_size = 8)
  {
    Assert (queue_length > 0,
            ExcMessage ("The queue length must be at least one, and preferably "
                        "larger than the number of processors on this system."));
    (void)queue_length; // removes -Wunused-parameter warning in optimized mode
    Assert (chunk_size > 0,
            ExcMessage ("The chunk_size must be at least one."));
    (void)chunk_size; // removes -Wunused-parameter warning in optimized mode

    // if no work then skip. (only use operator!= for iterators since we may
    // not have an equality comparison operator)
    if (!(begin != end))
      return;

    // we want to use TBB if we have support and if it is not disabled at
    // runtime:
#ifdef DEAL_II_WITH_THREADS
    if (multithread_info.n_threads()==1)
#endif
      {
        // need to copy the sample since it is marked const
        ScratchData scratch_data = sample_scratch_data;
        CopyData    copy_data    = sample_copy_data;

        for (Iterator i=begin; i!=end; ++i)
          {
            // need to check if the function is not the zero function. To
            // check zero-ness, create a C++ function out of it and check that
            if (static_cast<const std_cxx1x::function<void (const Iterator &,
                                                            ScratchData &,
                                                            CopyData &)>& >(worker))
              worker (i, scratch_data, copy_data);
            if (static_cast<const std_cxx1x::function<void (const CopyData &)>& >
                (copier))
              copier (copy_data);
          }
      }
#ifdef DEAL_II_WITH_THREADS
    else // have TBB and use more than one thread
      {
        // create the three stages of the pipeline
        internal::Implementation2::IteratorRangeToItemStream<Iterator,ScratchData,CopyData>
        iterator_range_to_item_stream (begin, end,
                                       queue_length,
                                       chunk_size,
                                       sample_scratch_data,
                                       sample_copy_data);

        // Check that the copier exist
        if (static_cast<const std_cxx1x::function<void (const CopyData &)>& >(copier))
          {
            internal::Implementation2::Worker<Iterator, ScratchData, CopyData> worker_filter (worker);
            internal::Implementation2::Copier<Iterator, ScratchData, CopyData> copier_filter (copier);

            // now create a pipeline from these stages
            tbb::pipeline assembly_line;
            assembly_line.add_filter (iterator_range_to_item_stream);
            assembly_line.add_filter (worker_filter);
            assembly_line.add_filter (copier_filter);

            // and run it
            assembly_line.run (queue_length);

            assembly_line.clear ();
          }
        else
          {
            internal::Implementation2::Worker<Iterator, ScratchData, CopyData> worker_filter (worker,false);

            // now create a pipeline from these stages
            tbb::pipeline assembly_line;
            assembly_line.add_filter (iterator_range_to_item_stream);
            assembly_line.add_filter (worker_filter);

            // and run it
            assembly_line.run (queue_length);

            assembly_line.clear ();
          }
      }
#endif
  }


  /**
   * This is one of two main functions of the WorkStream concept, doing work as
   * described in the introduction to this namespace. It corresponds to
   * implementation 3 of the paper by Turcksin, Kronbichler and Bangerth,
   * see @ref workstream_paper .
   * As such, it takes not a range of iterators described by a begin
   * and end iterator, but a "colored" graph of iterators where each
   * color represents cells for which writing the cell contributions into
   * the global object does not conflict (in other words, these cells
   * are not neighbors). Each "color" is represented by std::vectors of cells.
   * The first argument to this function, a set of sets of cells (which are
   * represent as a vector of vectors, for efficiency), is typically
   * constructed by calling GraphColoring::make_graph_coloring(). See there
   * for more information.
   *
   * This function that can be used for worker and copier objects that
   * are either pointers to non-member functions or objects that allow to be
   * called with an operator(), for example objects created by std::bind.
   *
   * The two data types <tt>ScratchData</tt> and <tt>CopyData</tt> need to
   * have a working copy constructor. <tt>ScratchData</tt> is only used in the
   * <tt>worker</tt> function, while <tt>CopyData</tt> is the object passed
   * from the <tt>worker</tt> to the <tt>copier</tt>.
   *
   * The @p queue_length argument indicates the number of items that can be
   * live at any given time. Each item consists of @p chunk_size elements of
   * the input stream that will be worked on by the worker and copier
   * functions one after the other on the same thread.
   *
   * @note If your data objects are large, or their constructors are
   * expensive, it is helpful to keep in mind that <tt>queue_length</tt>
   * copies of the <tt>ScratchData</tt> object and
   * <tt>queue_length*chunk_size</tt> copies of the <tt>CopyData</tt> object
   * are generated.
   */
  template <typename Worker,
            typename Copier,
            typename Iterator,
            typename ScratchData,
            typename CopyData>
  void
  run (const std::vector<std::vector<Iterator> > &colored_iterators,
       Worker                                   worker,
       Copier                                   copier,
       const ScratchData                       &sample_scratch_data,
       const CopyData                          &sample_copy_data,
       const unsigned int queue_length = 2*multithread_info.n_threads(),
       const unsigned int                       chunk_size = 8)
  {
    Assert (queue_length > 0,
            ExcMessage ("The queue length must be at least one, and preferably "
                        "larger than the number of processors on this system."));
    (void)queue_length; // removes -Wunused-parameter warning in optimized mode
    Assert (chunk_size > 0,
            ExcMessage ("The chunk_size must be at least one."));
    (void)chunk_size; // removes -Wunused-parameter warning in optimized mode

    // we want to use TBB if we have support and if it is not disabled at
    // runtime:
#ifdef DEAL_II_WITH_THREADS
    if (multithread_info.n_threads()==1)
#endif
      {
        // need to copy the sample since it is marked const
        ScratchData scratch_data = sample_scratch_data;
        CopyData    copy_data    = sample_copy_data;

        for (unsigned int color=0; color<colored_iterators.size(); ++color)
          for (typename std::vector<Iterator>::const_iterator p = colored_iterators[color].begin();
               p != colored_iterators[color].end(); ++p)
            {
              // need to check if the function is not the zero function. To
              // check zero-ness, create a C++ function out of it and check that
              if (static_cast<const std_cxx1x::function<void (const Iterator &,
                                                              ScratchData &,
                                                              CopyData &)>& >(worker))
                worker (*p, scratch_data, copy_data);
              if (static_cast<const std_cxx1x::function<void (const CopyData &)>& >(copier))
                copier (copy_data);
            }
      }
#ifdef DEAL_II_WITH_THREADS
    else // have TBB and use more than one thread
      {
        // loop over the various colors of what we're given
        for (unsigned int color=0; color<colored_iterators.size(); ++color)
          if (colored_iterators[color].size() > 0)
            {
              // create the three stages of the pipeline
              internal::Implementation3::IteratorRangeToItemStream<Iterator,ScratchData,CopyData>
              iterator_range_to_item_stream (colored_iterators[color].begin(),
                                             colored_iterators[color].end(),
                                             queue_length,
                                             chunk_size,
                                             sample_scratch_data,
                                             sample_copy_data);


              internal::Implementation3::WorkerAndCopier<Iterator, ScratchData, CopyData>
              worker_and_copier_filter (worker, copier);

              // now create a pipeline from these stages
              tbb::pipeline assembly_line;
              assembly_line.add_filter (iterator_range_to_item_stream);
              assembly_line.add_filter (worker_and_copier_filter);

              // and run it
              assembly_line.run (queue_length);

              assembly_line.clear ();
            }
      }
#endif
  }





  /**
   * This is a variant of one of the two main functions of the WorkStream
   * concept, doing work as described in the introduction to this namespace.
   * It corresponds to implementation 2 of the paper by Turcksin, Kronbichler
   * and Bangerth (see @ref workstream_paper).
   *
   * This is the function that can be used for worker and copier functions
   * that are member functions of a class. If the copier is an empty function,
   * it is ignored in the pipeline.
   *
   * The argument passed as @p end must be convertible to the same type as @p
   * begin, but doesn't have to be of the same type itself. This allows to
   * write code like <code>WorkStream().run(dof_handler.begin_active(),
   * dof_handler.end(), ...</code> where the first is of type
   * DoFHandler::active_cell_iterator whereas the second is of type
   * DoFHandler::raw_cell_iterator.
   *
   * The @p queue_length argument indicates the number of items that can be
   * live at any given time. Each item consists of @p chunk_size elements of
   * the input stream that will be worked on by the worker and copier
   * functions one after the other on the same thread.
   *
   * @note If your data objects are large, or their constructors are
   * expensive, it is helpful to keep in mind that <tt>queue_length</tt>
   * copies of the <tt>ScratchData</tt> object and
   * <tt>queue_length*chunk_size</tt> copies of the <tt>CopyData</tt> object
   * are generated.
   */
  template <typename MainClass,
            typename Iterator,
            typename ScratchData,
            typename CopyData>
  void
  run (const Iterator                          &begin,
       const typename identity<Iterator>::type &end,
       MainClass                               &main_object,
       void (MainClass::*worker) (const Iterator &,
                                  ScratchData &,
                                  CopyData &),
       void (MainClass::*copier) (const CopyData &),
       const ScratchData                       &sample_scratch_data,
       const CopyData                          &sample_copy_data,
       const unsigned int queue_length =        2*multithread_info.n_threads(),
       const unsigned int chunk_size =          8)
  {
    // forward to the other function
    run (begin, end,
         std_cxx1x::bind (worker,
                          std_cxx1x::ref (main_object),
                          std_cxx1x::_1, std_cxx1x::_2, std_cxx1x::_3),
         std_cxx1x::bind (copier,
                          std_cxx1x::ref (main_object),
                          std_cxx1x::_1),
         sample_scratch_data,
         sample_copy_data,
         queue_length,
         chunk_size);
  }

}




DEAL_II_NAMESPACE_CLOSE




//----------------------------   work_stream.h     ---------------------------
// end of #ifndef __deal2__work_stream_h
#endif
//----------------------------   work_stream.h     ---------------------------