This file is indexed.

/usr/include/deal.II/fe/mapping.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
// ---------------------------------------------------------------------
// $Id: mapping.h 31258 2013-10-16 14:41:36Z kronbichler $
//
// Copyright (C) 2000 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__mapping_h
#define __deal2__mapping_h


#include <deal.II/base/config.h>
#include <deal.II/base/derivative_form.h>
#include <deal.II/base/vector_slice.h>
#include <deal.II/grid/tria.h>
#include <deal.II/dofs/dof_handler.h>
#include <deal.II/fe/fe_update_flags.h>

#include <cmath>

DEAL_II_NAMESPACE_OPEN

template <int dim> class Quadrature;
template <int dim, int spacedim> class FEValuesData;
template <int dim, int spacedim> class FEValuesBase;
template <int dim, int spacedim> class FEValues;
template <int dim, int spacedim> class FEFaceValues;
template <int dim, int spacedim> class FESubfaceValues;

/**
 * The transformation type used
 * for the Mapping::transform() functions.
 *
 * Special finite elements may
 * need special Mapping from the
 * reference cell to the actual
 * mesh cell. In order to be most
 * flexible, this enum provides
 * an extensible interface for
 * arbitrary
 * transformations. Nevertheless,
 * these must be implemented in
 * the transform() functions of
 * inheriting classes in order to
 * work.
 *
 * @ingroup mapping
 */
enum MappingType
{
/// No mapping
  mapping_none = 0x0000,
/// Covariant mapping (see Mapping::transform() for details)
  mapping_covariant = 0x0001,
/// Contravariant mapping (see Mapping::transform() for details)
  mapping_contravariant = 0x0002,
/// Mapping of the gradient of a covariant vector field (see Mapping::transform() for details)
  mapping_covariant_gradient = 0x0003,
/// Mapping of the gradient of a contravariant vector field (see Mapping::transform() for details)
  mapping_contravariant_gradient = 0x0004,
  /**
   * The Piola transform usually used for Hdiv elements.
   * Piola transform is the
   * standard transformation of
   * vector valued elements in
   * H<sup>div</sup>. It amounts
   * to a contravariant
   * transformation scaled by the
   * inverse of the volume
   * element.
   */
  mapping_piola = 0x0100,
  /**
     transformation for the gradient of
     for a vector field
     correspoing to a mapping_piola
     transformation (see Mapping::transform() for details).
  */

  mapping_piola_gradient = 0x0101,
/// The mapping used for Nedelec elements
  /**
   * curl-conforming elements are
   * mapped as covariant
   * vectors. Nevertheless, we
   * introduce a separate mapping
   * type, such that we can use
   * the same flag for the vector
   * and its gradient (see Mapping::transform() for details).
   */
  mapping_nedelec = 0x0200,
/// The mapping used for Raviart-Thomas elements
  mapping_raviart_thomas = 0x0300,
/// The mapping used for BDM elements
  mapping_bdm = mapping_raviart_thomas
};


/**
 * Abstract base class for mapping classes.
 *
 * The interface for filling the tables of FEValues is provided.
 * Everything else has to happen in derived classes.
 *
 * The following paragraph applies to the implementation of
 * FEValues. Usage of the class is as follows: first, call the
 * functions @p update_once and @p update_each with the update
 * flags you need. This includes the flags needed by the
 * FiniteElement. Then call <tt>get_*_data</tt> and with the or'd
 * results.  This will initialize and return some internal data
 * structures.  On the first cell, call <tt>fill_fe_*_values</tt> with the
 * result of @p update_once. Finally, on each cell, use
 * <tt>fill_fe_*_values</tt> with the result of @p update_each to compute
 * values for a special cell.
 *
 * <h3>Mathematics of the mapping</h3>
 *
 * The mapping is a transformation $\mathbf x = \Phi(\mathbf{\hat x})$
 * which maps the reference cell [0,1]<sup>dim</sup> to the actual
 * grid cell in R<sup>spacedim</sup>.
 * In order to describe the application of the mapping to
 * different objects, we introduce the notation for the Jacobian
 * $J(\mathbf{\hat x}) = \nabla\Phi(\mathbf{\hat x})$. For instance,
 * if dim=spacedim=2, we have
 * @f[
 * J(\mathbf{\hat x}) = \left(\begin{matrix}
 * \frac{\partial x}{\partial \hat x} & \frac{\partial x}{\partial \hat y}
 * \\
 * \frac{\partial y}{\partial \hat x} & \frac{\partial y}{\partial \hat y}
 * \end{matrix}\right)
 * @f]
 *
 * <h4>Mapping of functions</h4>
 *
 * Functions are simply mapped such that
 * @f[
 * u(\mathbf x) = u\bigl(\Phi(\mathbf{\hat x})\bigr)
 * = \hat u(\mathbf{\hat x}).
 * @f]
 * Since finite element shape functions are usually defined on the
 * reference cell, nothing needs to be done for them. For a function
 * defined on the computational domain, the quadrature points need to
 * be mapped, which is done in fill_fe_values() if
 * @p update_quadrature_points is set in the update flags. The mapped
 * quadrature points are then accessed through FEValuesBase::quadrature_point().
 *
 * @todo Add a function <tt>transform_quadrature_points</tt> for this.
 *
 * <h4>Mapping of integrals</h4>
 *
 * The volume form $d\hat x$ is mapped such that for a grid cell <i>Z</i>
 * @f[
 *  \int_Z u(\mathbf x)\,d\mathbf x = \int_{\hat Z} \hat
 * u(\mathbf{\hat x}) \left|\text{det}J(\mathbf{\hat x})\right|
 * \,d\mathbf{\hat x}.
 * @f]
 *
 * The transformed quadrature weights $\left|\text{det}J(\mathbf{\hat
 * x})\right|$ are accessed through FEValuesBase::JxW() and
 * computed in fill_fe_values(), if @p update_JxW_values is set in the
 * update flags.
 *
 * @todo Add a function <tt>transform_quadrature_weights</tt> for
 * this.
 *
 * @todo Add documentation on the codimension-one case
 *
 * <h4>Mapping of vector fields, differential forms and gradients of vector fields</h4>
 *
 * The transfomation of vector fields, differential forms (gradients/jacobians) and
 * gradients of vector fields between the reference cell and the actual grid cell
 * follows the general form
 *
 * @f[
 * \mathbf v(\mathbf x) = \mathbf A(\mathbf{\hat x})
 * \mathbf{\hat v}(\mathbf{\hat x}),
 * \qquad
 * \mathbf T(\mathbf x) = \mathbf A(\mathbf{\hat x})
 * \mathbf{\hat T}(\mathbf{\hat x}) \mathbf B(\mathbf{\hat x}),
 * @f]
 *
 * where <b>v</b> is a vector field or a differential form and
 * and <b>T</b> a tensor field of gradients.
 * The differential forms <b>A</b> and <b>B</b> are
 * determined by the MappingType enumerator.
 * These transformations are performed through the functions
 * transform(). See the documentation there for possible
 * choices.
 *
 * <h3>Technical notes</h3>
 *
 * A hint to implementators: no function except the two functions
 * @p update_once and @p update_each may add any flags.
 *
 * For more information about the <tt>spacedim</tt> template parameter
 * check the documentation of FiniteElement or the one of
 * Triangulation.
 *
 * <h3>References</h3>
 *
 * A general publication on differential geometry and finite elements
 * is the survey <ul><li>Douglas N. Arnold, Richard S. Falk, and
 * Ragnar Winther. <i>Finite element exterior calculus: from
 * Hodge theory to numerical stability.</i>
 * Bull. Amer. Math. Soc. (N.S.), 47:281-354, 2010. <a
 * href="http://dx.doi.org/10.1090/S0273-0979-10-01278-4">DOI:
 * 10.1090/S0273-0979-10-01278-4</a>.</ul>
 *
 * The description of the Piola transform has been taken from the <a
 * href="http://www.math.uh.edu/~rohop/spring_05/downloads/">lecture
 * notes</a> by Ronald H. W. Hoppe, University of Houston, Chapter 7.
 *
 * @ingroup mapping
 * @author Guido Kanschat, Ralf Hartmann 2000, 2001
 */
template <int dim, int spacedim=dim>
class Mapping : public Subscriptor
{
public:

  /**
   * Virtual destructor.
   */
  virtual ~Mapping ();

  /**
   * Transforms the point @p p on
   * the unit cell to the point
   * @p p_real on the real cell
   * @p cell and returns @p p_real.
   */
  virtual Point<spacedim>
  transform_unit_to_real_cell (
    const typename Triangulation<dim,spacedim>::cell_iterator &cell,
    const Point<dim>                                 &p) const = 0;

  /**
   * Transforms the point @p p on
   * the real @p cell to the corresponding
   * point on the unit cell, and
   * return its coordinates.
   *
   * In the codimension one case,
   * this function returns the
   * normal projection of the real
   * point @p p on the curve or
   * surface identified by the @p
   * cell.
   *
   * @note Polynomial mappings from
   * the reference (unit) cell coordinates
   * to the coordinate system of a real
   * cell are not always invertible if
   * the point for which the inverse
   * mapping is to be computed lies
   * outside the cell's boundaries.
   * In such cases, the current function
   * may fail to compute a point on
   * the reference cell whose image
   * under the mapping equals the given
   * point @p p.  If this is the case
   * then this function throws an
   * exception of type
   * Mapping::ExcTransformationFailed .
   * Whether the given point @p p lies
   * outside the cell can therefore be
   * determined by checking whether the
   * return reference coordinates lie
   * inside of outside the reference
   * cell (e.g., using
   * GeometryInfo::is_inside_unit_cell)
   * or whether the exception mentioned
   * above has been thrown.
   */
  virtual Point<dim>
  transform_real_to_unit_cell (
    const typename Triangulation<dim,spacedim>::cell_iterator &cell,
    const Point<spacedim>                            &p) const = 0;

  /**
   * Base class for internal data
   * of finite element and mapping
   * objects. The internal
   * mechanism is that upon
   * construction of a @p FEValues
   * objects, it asks the mapping
   * and finite element classes
   * that are to be used to
   * allocate memory for their own
   * purpose in which they may
   * store data that only needs to
   * be computed once. For example,
   * most finite elements will
   * store the values of the shape
   * functions at the quadrature
   * points in this object, since
   * they do not change from cell
   * to cell and only need to be
   * computed once. Since different
   * @p FEValues objects using
   * different quadrature rules
   * might access the same finite
   * element object at the same
   * time, it is necessary to
   * create one such object per
   * @p FEValues object. Ownership
   * of this object is then
   * transferred to the
   * @p FEValues object, but a
   * pointer to this object is
   * passed to the finite element
   * object every time it shall
   * compute some data so that it
   * has access to the precomputed
   * values stored there.
   */
  class InternalDataBase: public Subscriptor
  {
  private:
    /**
     * Copy constructor forbidden.
     */
    InternalDataBase (const InternalDataBase &);

  public:
    /**
     * Constructor. Sets
     * @p UpdateFlags to
     * @p update_default and
     * @p first_cell to @p true.
     */
    InternalDataBase ();

    /**
     * Virtual destructor for
     * derived classes
     */
    virtual ~InternalDataBase ();

    /**
     * Values updated by the constructor or
     * by reinit.
     */
    UpdateFlags          update_flags;

    /**
     * Values computed by
     * constructor.
     */
    UpdateFlags          update_once;

    /**
     * Values updated on each
     * cell by reinit.
     */
    UpdateFlags          update_each;

    /**
     * If <tt>first_cell==true</tt>
     * this function returns
     * @p update_flags,
     * i.e. <tt>update_once|update_each</tt>.
     * If <tt>first_cell==false</tt>
     * it returns
     * @p update_each.
     */
    UpdateFlags  current_update_flags() const;

    /**
     * Return whether we are
     * presently initializing
     * data for the first
     * cell. The value of the
     * field this function is
     * returning is set to
     * @p true in the
     * constructor, and cleared
     * by the @p FEValues class
     * after the first cell has
     * been initialized.
     *
     * This function is used to
     * determine whether we need
     * to use the @p update_once
     * flags for computing data,
     * or whether we can use the
     * @p update_each flags.
     */
    bool is_first_cell () const;

    /**
     * Set the @p first_cell
     * flag to @p false. Used by
     * the @p FEValues class to
     * indicate that we have
     * already done the work on
     * the first cell.
     */
    virtual void clear_first_cell ();

    /**
     * Return an estimate (in
     * bytes) or the memory
     * consumption of this
     * object.
     */
    virtual std::size_t memory_consumption () const;

    /**
     * The determinant of the
     * Jacobian in each
     * quadrature point. Filled
     * if #update_volume_elements.
     */
    std::vector<double> volume_elements;

    /**
     * The positions of the
     * mapped (generalized)
     * support points.
     */
    std::vector<Point<spacedim> > support_point_values;

    /*
     * The Jacobian of the
     * transformation in the
     * (generalized) support
     * points.
     */
    std::vector<Tensor<2,spacedim> > support_point_gradients;

    /*
     * The inverse of the
     * Jacobian of the
     * transformation in the
     * (generalized) support
     * points.
     */
    std::vector<Tensor<2,spacedim> > support_point_inverse_gradients;


  private:
    /**
     * The value returned by
     * @p is_first_cell.
     */
    bool first_cell;
  };

  /**
   * Transform a field of vectors or 1-differential forms according to the selected
   * MappingType.
   *
   * @note Normally, this function is called by a finite element,
   * filling FEValues objects. For this finite element, there should be
   * an alias MappingType like @p mapping_bdm, @p mapping_nedelec, etc. This
   * alias should be preferred to using the types below.
   *
   * The mapping types currently implemented by derived classes are:
   * <ul>
   * <li> @p mapping_contravariant: maps a vector field on the reference cell
   * is to the physical cell through the Jacobian:
   * @f[
   * \mathbf u(\mathbf x) = J(\mathbf{\hat x})\mathbf{\hat u}(\mathbf{\hat x}).
   * @f]
   * In physics, this is usually referred to as the contravariant
   * transformation. Mathematically, it is the push forward of a
   * vector field.
   *
   * <li> @p mapping_covariant: maps a field of one-forms on the reference cell
   * to a field of one-forms on the physical cell.
   * (theoretically this would refer to a DerivativeForm<1, dim, 1> but it
   * canonically identified with a Tensor<1,dim>).
   * Mathematically, it is the pull back of the differential form
   * @f[
   * \mathbf u(\mathbf x) = J(J^{T} J)^{-1}(\mathbf{\hat x})\mathbf{\hat
   * u}(\mathbf{\hat x}).
   * @f]
   * In the case when dim=spacedim the previous formula reduces to
   * @f[
   * \mathbf u(\mathbf x) = J^{-T}(\mathbf{\hat x})\mathbf{\hat
   * u}(\mathbf{\hat x}).
   * @f]
   * Gradients of scalar differentiable functions are transformed this way.
   *
   * <li> @p mapping_piola: A field of <i>n-1</i>-forms on the reference cell is also
   * represented by a vector field, but again transforms differently,
   * namely by the Piola transform
   * @f[
   *  \mathbf u(\mathbf x) = \frac{1}{\text{det}J(\mathbf x)}
   * J(\mathbf x) \mathbf{\hat u}(\mathbf x).
   * @f]
   * </ul>
   *
   * @todo What is n in mapping_piola description?
   */
  virtual
  void
  transform (const VectorSlice<const std::vector<Tensor<1,dim> > > input,
             VectorSlice<std::vector<Tensor<1,spacedim> > >        output,
             const InternalDataBase &internal,
             const MappingType type) const = 0;



  /**
     Transform a field of differential forms from the reference cell to the physical cell.

     It is useful to think of $\mathbf{T} = D \mathbf u$ and
     $\mathbf{\hat T} = \hat D \mathbf{\hat u}$, with $\mathbf u$ a vector field.

     The mapping types currently implemented by derived classes are:
     <ul>
     <li> @p mapping_covariant: maps a field of forms on the reference cell
     to a field of forms on the physical cell.
     Mathematically, it is the pull back of the differential form
     @f[
     \mathbf T(\mathbf x) = \mathbf{\hat T}(\mathbf{\hat x})
                            J*(J^{T} J)^{-1}(\mathbf{\hat x}).
     @f]
     n the case when dim=spacedim the previous formula reduces to
     @f[
     \mathbf T(\mathbf x) = \mathbf{\hat u}(\mathbf{\hat x})
                            J^{-1}(\mathbf{\hat x}).
     @f]
    Jacobians of spacedim-vector valued differentiable functions are transformed this way.
     </ul>

     @note It would have been more reasonable to make this transform a template function
     with the rank in <code>DerivativeForm@<1, dim, rank@></code>. Unfortunately C++ does not
     allow templatized virtual functions. This is why we identify
     <code>DerivativeForm@<1, dim, 1@></code> with a <code>Tensor@<1,dim@></code>
     when using  mapping_covariant() in the function transform above this one.
  */

  virtual
  void
  transform (const VectorSlice<const std::vector< DerivativeForm<1, dim, spacedim> > > input,
             VectorSlice<std::vector<Tensor<2,spacedim> > >             output,
             const InternalDataBase &internal,
             const MappingType type) const = 0;



  /**
     Transform a tensor field from the reference cell to the physical cell.
     This tensors are most of times the jacobians in the reference cell of
     vector fields that have been pulled back from the physical cell.

     The mapping types currently implemented by derived classes are:
     <ul>

     <li> @p mapping_contravariant_gradient, it
     assumes $\mathbf u(\mathbf x) = J \mathbf{\hat u}$ so that
     @f[
     \mathbf T(\mathbf x) =
     J(\mathbf{\hat x}) \mathbf{\hat T}(\mathbf{\hat x})
     J^{-1}(\mathbf{\hat x}).
     @f]

     <li> @p mapping_covariant_gradient, it
     assumes $\mathbf u(\mathbf x) = J^{-T} \mathbf{\hat u}$ so that
     @f[
     \mathbf T(\mathbf x) =
     J^{-T}(\mathbf{\hat x}) \mathbf{\hat T}(\mathbf{\hat x})
     J^{-1}(\mathbf{\hat x}).
     @f]

     <li> @p mapping_piola_gradient, it
     assumes $\mathbf u(\mathbf x) = \frac{1}{\text{det}J(\mathbf x)}
     J(\mathbf x) \mathbf{\hat u}(\mathbf x)$
     so that
     @f[
     \mathbf T(\mathbf x) =
     \frac{1}{\text{det}J(\mathbf x)}
     J(\mathbf{\hat x}) \mathbf{\hat T}(\mathbf{\hat x})
     J^{-1}(\mathbf{\hat x}).
     @f]
     </ul>

     @todo The formulas for mapping_covariant_gradient(),
     mapping_contravariant_gradient() and mapping_piola_gradient()
     are only true as stated for linear mappings.
     If, for example, the mapping is bilinear then there is a missing
     term associated with the derivative of J.
  */
  virtual
  void
  transform (const VectorSlice<const std::vector<Tensor<2, dim> > >     input,
             VectorSlice<std::vector<Tensor<2,spacedim> > >             output,
             const InternalDataBase &internal,
             const MappingType type) const = 0;

  /**
   * @deprecated Use transform() instead.
   */
  void
  transform_covariant (const VectorSlice<const std::vector<Tensor<1,dim> > > input,
                       const unsigned int                                    offset,
                       VectorSlice<std::vector<Tensor<1,spacedim> > >        output,
                       const InternalDataBase &internal) const DEAL_II_DEPRECATED;

  /**
   * @deprecated Use transform() instead.
   */
  void
  transform_covariant (const VectorSlice<const std::vector<DerivativeForm<1, dim ,spacedim> > > input,
                       const unsigned int                 offset,
                       VectorSlice<std::vector<Tensor<2,spacedim> > >      output,
                       const InternalDataBase &internal) const DEAL_II_DEPRECATED;

  /**
   * @deprecated Use transform() instead.
   */
  void
  transform_contravariant (const VectorSlice<const std::vector<Tensor<1,dim> > > input,
                           const unsigned int                 offset,
                           VectorSlice<std::vector<Tensor<1,spacedim> > >      output,
                           const typename Mapping<dim,spacedim>::InternalDataBase &internal) const DEAL_II_DEPRECATED;

  /**
   * @deprecated Use transform() instead.
   */

  void
  transform_contravariant (const VectorSlice<const std::vector<DerivativeForm<1, dim,spacedim> > > input,
                           const unsigned int                 offset,
                           const VectorSlice<std::vector<Tensor<2,spacedim> > > output,
                           const typename Mapping<dim,spacedim>::InternalDataBase &internal) const DEAL_II_DEPRECATED;

  /**
   * The transformed (generalized)
   * support point.
   */
  const Point<spacedim> &support_point_value(
    const unsigned int index,
    const typename Mapping<dim,spacedim>::InternalDataBase &internal) const;

  /**
   * The Jacobian
   * matrix of the transformation
   * in the (generalized) support
   * point.
   */
  const Tensor<2,spacedim> &support_point_gradient(
    const unsigned int index,
    const typename Mapping<dim,spacedim>::InternalDataBase &internal) const;

  /**
   * The inverse Jacobian
   * matrix of the transformation
   * in the (generalized) support
   * point.
   */
  const Tensor<2,spacedim> &support_point_inverse_gradient(
    const unsigned int index,
    const typename Mapping<dim,spacedim>::InternalDataBase &internal) const;

  /**
   * Return a pointer to a copy of the
   * present object. The caller of this
   * copy then assumes ownership of it.
   *
   * Since one can't create
   * objects of class Mapping, this
   * function of course has to be
   * implemented by derived classes.
   *
   * This function is mainly used by the
   * hp::MappingCollection class.
   */
  virtual
  Mapping<dim,spacedim> *clone () const = 0;

  /**
   * Returns whether the mapping preserves
   * vertex locations, i.e. whether the
   * mapped location of the reference cell
   * vertices (given by
   * GeometryInfo::unit_cell_vertex())
   * equals the result of
   * <code>cell-@>vertex()</code>.
   *
   * For example, implementations in
   * derived classes return @p true for
   * MappingQ, MappingQ1, MappingCartesian,
   * but @p false for MappingQEulerian,
   * MappingQ1Eulerian.
   */
  virtual
  bool preserves_vertex_locations () const = 0;

  /**
   * Exception
   */
  DeclException0 (ExcInvalidData);


  /**
   * Computing the mapping between a
   * real space point and a point
   * in reference space failed, typically because the given point
   * lies outside the cell where the inverse mapping is not
   * unique.
   *
   * @ingroup Exceptions
   */
  DeclException0(ExcTransformationFailed);

  /**
   * deal.II assumes the Jacobian determinant to be positive. When the cell
   * geometry is distorted under the image of the mapping, the mapping becomes
   * invalid and this exception is thrown.
   *
   * @ingroup Exceptions
   */
  DeclException3 (ExcDistortedMappedCell,
                  Point<spacedim>, double, int,
                  << "The image of the mapping applied to cell with center ["
                  << arg1 << "] is distorted. The cell geometry or the "
                  << "mapping are invalid, giving a non-positive volume "
                  << "fraction of " << arg2 << " in quadrature point "
                  << arg3 << ".");

private:

  /**
   * Indicate fields to be updated
   * in the constructor of
   * FEValues. Especially,
   * fields not asked for by
   * FEValues, but computed
   * for efficiency reasons will be
   * notified here.
   *
   * See @ref UpdateFlagsEssay.
   */
  virtual UpdateFlags update_once (const UpdateFlags) const = 0;

  /**
   * The same as update_once(),
   * but for the flags to be updated for
   * each grid cell.
   *
   * See @ref UpdateFlagsEssay.
   */
  virtual UpdateFlags update_each (const UpdateFlags) const = 0;

  /**
   * Prepare internal data
   * structures and fill in values
   * independent of the cell.
   */
  virtual InternalDataBase *
  get_data (const UpdateFlags,
            const Quadrature<dim> &quadrature) const = 0;

  /**
   * Prepare internal data
   * structure for transformation
   * of faces and fill in values
   * independent of the cell.
   */
  virtual InternalDataBase *
  get_face_data (const UpdateFlags flags,
                 const Quadrature<dim-1>& quadrature) const = 0;

  /**
   * Prepare internal data
   * structure for transformation
   * of children of faces and fill
   * in values independent of the
   * cell.
   */
  virtual InternalDataBase *
  get_subface_data (const UpdateFlags flags,
                    const Quadrature<dim-1>& quadrature) const = 0;


  /**
   * Fill the transformation fields
   * of @p FEValues.  Given a grid
   * cell and the quadrature points
   * on the unit cell, it computes
   * all values specified by
   * @p flags. The arrays to be
   * filled have to have the
   * correct size.
   *
   * Values are split into two
   * groups: first,
   * @p quadrature_points and
   * @p JxW_values are
   * filled with the quadrature
   * rule transformed to the
   * cell in physical space.
   *
   * The second group contains the
   * matrices needed to transform
   * vector-valued functions,
   * namely
   * @p jacobians,
   * the derivatives
   * @p jacobian_grads,
   * and the inverse operations in
   * @p inverse_jacobians.
   */
  /*     virtual void */
  /*     fill_fe_values (const typename Triangulation<dim,spacedim>::cell_iterator &cell, */
  /*                  const Quadrature<dim>                         &quadrature, */
  /*                  InternalDataBase                              &internal, */
  /*                  std::vector<Point<spacedim> >                 &quadrature_points, */
  /*                  std::vector<double>                           &JxW_values) const = 0; */

  /** The function above adjusted
   * with the variable
   * cell_normal_vectors for the
   * case of codimension 1
   */
  virtual void
  fill_fe_values (const typename Triangulation<dim,spacedim>::cell_iterator &cell,
                  const Quadrature<dim>                                     &quadrature,
                  InternalDataBase                                          &internal,
                  std::vector<Point<spacedim> >                             &quadrature_points,
                  std::vector<double>                                       &JxW_values,
                  std::vector<DerivativeForm<1,dim,spacedim>  >       &jacobians,
                  std::vector<DerivativeForm<2,dim,spacedim>  >       &jacobian_grads,
                  std::vector<DerivativeForm<1,spacedim,dim>  >       &inverse_jacobians,
                  std::vector<Point<spacedim> >                             &cell_normal_vectors,
                  CellSimilarity::Similarity                           &cell_similarity
                 ) const=0;



  /**
   * Performs the same as @p
   * fill_fe_values on a face.
   * Additionally, @p boundary_form
   * (see @ref GlossBoundaryForm)
   * and @p normal_vectors can be
   * computed on surfaces. Since
   * the boundary form already
   * contains the determinant of
   * the Jacobian of the
   * transformation, it is
   * sometimes more economic to use
   * the boundary form instead of
   * the product of the unit normal
   * and the transformed quadrature
   * weight.
   */
  virtual void
  fill_fe_face_values (const typename Triangulation<dim,spacedim>::cell_iterator &cell,
                       const unsigned int                                        face_no,
                       const Quadrature<dim-1>                                   &quadrature,
                       InternalDataBase                                          &internal,
                       std::vector<Point<spacedim> >                             &quadrature_points,
                       std::vector<double>                                       &JxW_values,
                       std::vector<Tensor<1,spacedim> >                          &boundary_form,
                       std::vector<Point<spacedim> >                             &normal_vectors) const = 0;

  /**
   * See above.
   */
  virtual void
  fill_fe_subface_values (const typename Triangulation<dim,spacedim>::cell_iterator &cell,
                          const unsigned int                        face_no,
                          const unsigned int                        sub_no,
                          const Quadrature<dim-1>                  &quadrature,
                          InternalDataBase                         &internal,
                          std::vector<Point<spacedim> >        &quadrature_points,
                          std::vector<double>                      &JxW_values,
                          std::vector<Tensor<1,spacedim> >     &boundary_form,
                          std::vector<Point<spacedim> >        &normal_vectors) const = 0;

  /**
   * Give class @p FEValues access
   * to the private <tt>get_...data</tt>
   * and <tt>fill_fe_...values</tt>
   * functions.
   */
  friend class FEValuesBase<dim,spacedim>;
  friend class FEValues<dim,spacedim>;
  friend class FEFaceValues<dim,spacedim>;
  friend class FESubfaceValues<dim,spacedim>;
};


/* ------------------------- inline functions ------------------------- */

#ifndef DOXYGEN

template <int dim, int spacedim>
inline
UpdateFlags
Mapping<dim,spacedim>::InternalDataBase::current_update_flags () const
{
  if (first_cell)
    {
      Assert (update_flags==(update_once|update_each),
              ExcInternalError());
      return update_flags;
    }
  else
    return update_each;
}



template <int dim, int spacedim>
inline
bool
Mapping<dim,spacedim>::InternalDataBase::is_first_cell () const
{
  return first_cell;
}



template <int dim, int spacedim>
inline
void
Mapping<dim,spacedim>::InternalDataBase::clear_first_cell ()
{
  first_cell = false;
}



template <int dim, int spacedim>
inline
const Point<spacedim> &
Mapping<dim,spacedim>::support_point_value(
  const unsigned int index,
  const typename Mapping<dim,spacedim>::InternalDataBase &internal) const
{
  AssertIndexRange(index, internal.support_point_values.size());
  return internal.support_point_values[index];
}


template <int dim, int spacedim>
inline
const Tensor<2,spacedim> &
Mapping<dim,spacedim>::support_point_gradient(
  const unsigned int index,
  const typename Mapping<dim,spacedim>::InternalDataBase &internal) const
{
  AssertIndexRange(index, internal.support_point_gradients.size());
  return internal.support_point_gradients[index];
}


template <int dim, int spacedim>
inline
const Tensor<2,spacedim> &
Mapping<dim,spacedim>::support_point_inverse_gradient(
  const unsigned int index,
  const typename Mapping<dim,spacedim>::InternalDataBase &internal) const
{
  AssertIndexRange(index, internal.support_point_inverse_gradients.size());
  return internal.support_point_inverse_gradients[index];
}


#endif // DOXYGEN

DEAL_II_NAMESPACE_CLOSE

#endif