This file is indexed.

/usr/include/deal.II/integrators/divergence.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
// ---------------------------------------------------------------------
// $Id: divergence.h 31932 2013-12-08 02:15:54Z heister $
//
// Copyright (C) 2010 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__integrators_divergence_h
#define __deal2__integrators_divergence_h


#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/quadrature.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/fe/mapping.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/meshworker/dof_info.h>

DEAL_II_NAMESPACE_OPEN

namespace LocalIntegrators
{
  /**
   * @brief Local integrators related to the divergence operator and its trace.
   *
   * @ingroup Integrators
   * @author Guido Kanschat
   * @date 2010
   */
  namespace Divergence
  {
    /**
     * Auxiliary function. Computes the grad-div-operator from a set of
     * Hessians.
     *
     * @note The third tensor argument is not used in two dimensions and
     * can for instance duplicate one of the previous.
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template <int dim>
    Tensor<1,dim>
    grad_div(
      const Tensor<2,dim> &h0,
      const Tensor<2,dim> &h1,
      const Tensor<2,dim> &h2)
    {
      Tensor<1,dim> result;
      for (unsigned int d=0; d<dim; ++d)
        {
          result[d] += h0[d][0];
          if (dim >=2) result[d] += h1[d][1];
          if (dim >=3) result[d] += h2[d][2];
        }
      return result;
    }


    /**
     * Cell matrix for divergence. The derivative is on the trial
     * function.
     * \f[
     * \int_Z v\nabla \cdot \mathbf u \,dx
     * \f]
     * This is the strong divergence operator and the trial
     * space should be at least <b>H</b><sup>div</sup>. The test functions
     * may be discontinuous.
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template <int dim>
    void cell_matrix (
      FullMatrix<double> &M,
      const FEValuesBase<dim> &fe,
      const FEValuesBase<dim> &fetest,
      double factor = 1.)
    {
      unsigned int fecomp = fe.get_fe().n_components();
      const unsigned int n_dofs = fe.dofs_per_cell;
      const unsigned int t_dofs = fetest.dofs_per_cell;
      AssertDimension(fecomp, dim);
      AssertDimension(fetest.get_fe().n_components(), 1);
      AssertDimension(M.m(), t_dofs);
      AssertDimension(M.n(), n_dofs);

      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          const double dx = fe.JxW(k) * factor;
          for (unsigned int i=0; i<t_dofs; ++i)
            {
              const double vv = fetest.shape_value(i,k);
              for (unsigned int d=0; d<dim; ++d)
                for (unsigned int j=0; j<n_dofs; ++j)
                  {
                    const double du = fe.shape_grad_component(j,k,d)[d];
                    M(i,j) += dx * du * vv;
                  }
            }
        }
    }

    /**
     * The residual of the divergence operator in strong form.
     * \f[
     * \int_Z v\nabla \cdot \mathbf u \,dx
     * \f]
     * This is the strong divergence operator and the trial
     * space should be at least <b>H</b><sup>div</sup>. The test functions
     * may be discontinuous.
     *
     * The function cell_matrix() is the Frechet derivative of this function with respect
     * to the test functions.
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template <int dim, typename number>
    void cell_residual(
      Vector<number> &result,
      const FEValuesBase<dim> &fetest,
      const VectorSlice<const std::vector<std::vector<Tensor<1,dim> > > > &input,
      const double factor = 1.)
    {
      AssertDimension(fetest.get_fe().n_components(), 1);
      AssertVectorVectorDimension(input, dim, fetest.n_quadrature_points);
      const unsigned int t_dofs = fetest.dofs_per_cell;
      Assert (result.size() == t_dofs, ExcDimensionMismatch(result.size(), t_dofs));

      for (unsigned int k=0; k<fetest.n_quadrature_points; ++k)
        {
          const double dx = factor * fetest.JxW(k);

          for (unsigned int i=0; i<t_dofs; ++i)
            for (unsigned int d=0; d<dim; ++d)
              result(i) += dx * input[d][k][d] * fetest.shape_value(i,k);
        }
    }


    /**
     * The residual of the divergence operator in weak form.
     * \f[
     * - \int_Z \nabla v \cdot \mathbf u \,dx
     * \f]
     * This is the weak divergence operator and the test
     * space should be at least <b>H</b><sup>1</sup>. The trial functions
     * may be discontinuous.
     *
     * @todo Verify: The function cell_matrix() is the Frechet derivative of this function with respect
     * to the test functions.
     *
     * @author Guido Kanschat
     * @date 2013
     */
    template <int dim, typename number>
    void cell_residual(
      Vector<number> &result,
      const FEValuesBase<dim> &fetest,
      const VectorSlice<const std::vector<std::vector<double> > > &input,
      const double factor = 1.)
    {
      AssertDimension(fetest.get_fe().n_components(), 1);
      AssertVectorVectorDimension(input, dim, fetest.n_quadrature_points);
      const unsigned int t_dofs = fetest.dofs_per_cell;
      Assert (result.size() == t_dofs, ExcDimensionMismatch(result.size(), t_dofs));

      for (unsigned int k=0; k<fetest.n_quadrature_points; ++k)
        {
          const double dx = factor * fetest.JxW(k);

          for (unsigned int i=0; i<t_dofs; ++i)
            for (unsigned int d=0; d<dim; ++d)
              result(i) -= dx * input[d][k] * fetest.shape_grad(i,k)[d];
        }
    }


    /**
     * Cell matrix for gradient. The derivative is on the trial function.
     * \f[
     * \int_Z \nabla u \cdot \mathbf v\,dx
     * \f]
     *
     * This is the strong gradient and the trial space should be at least
     * in <i>H</i><sup>1</sup>. The test functions can be discontinuous.
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template <int dim>
    void gradient_matrix(
      FullMatrix<double> &M,
      const FEValuesBase<dim> &fe,
      const FEValuesBase<dim> &fetest,
      double factor = 1.)
    {
      unsigned int fecomp = fetest.get_fe().n_components();
      const unsigned int t_dofs = fetest.dofs_per_cell;
      const unsigned int n_dofs = fe.dofs_per_cell;

      AssertDimension(fecomp, dim);
      AssertDimension(fe.get_fe().n_components(), 1);
      AssertDimension(M.m(), t_dofs);
      AssertDimension(M.n(), n_dofs);

      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          const double dx = fe.JxW(k) * factor;
          for (unsigned int d=0; d<dim; ++d)
            for (unsigned int i=0; i<t_dofs; ++i)
              {
                const double vv = fetest.shape_value_component(i,k,d);
                for (unsigned int j=0; j<n_dofs; ++j)
                  {
                    const Tensor<1,dim> &Du = fe.shape_grad(j,k);
                    M(i,j) += dx * vv * Du[d];
                  }
              }
        }
    }

    /**
     * The residual of the gradient operator in strong form.
     * \f[
     * \int_Z \mathbf v\cdot\nabla u \,dx
     * \f]
     * This is the strong gradient operator and the trial
     * space should be at least <b>H</b><sup>1</sup>. The test functions
     * may be discontinuous.
     *
     * The function gradient_matrix() is the Frechet derivative of this function with respect to the test functions.
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template <int dim, typename number>
    void gradient_residual(
      Vector<number> &result,
      const FEValuesBase<dim> &fetest,
      const std::vector<Tensor<1,dim> > &input,
      const double factor = 1.)
    {
      AssertDimension(fetest.get_fe().n_components(), dim);
      AssertDimension(input.size(), fetest.n_quadrature_points);
      const unsigned int t_dofs = fetest.dofs_per_cell;
      Assert (result.size() == t_dofs, ExcDimensionMismatch(result.size(), t_dofs));

      for (unsigned int k=0; k<fetest.n_quadrature_points; ++k)
        {
          const double dx = factor * fetest.JxW(k);

          for (unsigned int i=0; i<t_dofs; ++i)
            for (unsigned int d=0; d<dim; ++d)
              result(i) += dx * input[k][d] * fetest.shape_value_component(i,k,d);
        }
    }

    /**
     * The residual of the gradient operator in weak form.
     * \f[
     * -\int_Z \nabla\cdot \mathbf v u \,dx
     * \f]
     * This is the weak gradient operator and the test
     * space should be at least <b>H</b><sup>div</sup>. The trial functions
     * may be discontinuous.
     *
     * @todo Verify: The function gradient_matrix() is the Frechet derivative of this function with respect to the test functions.
     *
     * @author Guido Kanschat
     * @date 2013
     */
    template <int dim, typename number>
    void gradient_residual(
      Vector<number> &result,
      const FEValuesBase<dim> &fetest,
      const std::vector<double> &input,
      const double factor = 1.)
    {
      AssertDimension(fetest.get_fe().n_components(), dim);
      AssertDimension(input.size(), fetest.n_quadrature_points);
      const unsigned int t_dofs = fetest.dofs_per_cell;
      Assert (result.size() == t_dofs, ExcDimensionMismatch(result.size(), t_dofs));

      for (unsigned int k=0; k<fetest.n_quadrature_points; ++k)
        {
          const double dx = factor * fetest.JxW(k);

          for (unsigned int i=0; i<t_dofs; ++i)
            for (unsigned int d=0; d<dim; ++d)
              result(i) -= dx * input[k] * fetest.shape_grad_component(i,k,d)[d];
        }
    }

    /**
     * The trace of the divergence operator, namely the product of the
     * normal component of the vector valued trial space and the test
     * space.
     * @f[ \int_F (\mathbf u\cdot \mathbf n) v \,ds @f]
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template<int dim>
    void
    u_dot_n_matrix (
      FullMatrix<double> &M,
      const FEValuesBase<dim> &fe,
      const FEValuesBase<dim> &fetest,
      double factor = 1.)
    {
      unsigned int fecomp = fe.get_fe().n_components();
      const unsigned int n_dofs = fe.dofs_per_cell;
      const unsigned int t_dofs = fetest.dofs_per_cell;

      AssertDimension(fecomp, dim);
      AssertDimension(fetest.get_fe().n_components(), 1);
      AssertDimension(M.m(), t_dofs);
      AssertDimension(M.n(), n_dofs);

      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          const Tensor<1,dim> ndx = factor * fe.JxW(k) * fe.normal_vector(k);
          for (unsigned int i=0; i<t_dofs; ++i)
            for (unsigned int j=0; j<n_dofs; ++j)
              for (unsigned int d=0; d<dim; ++d)
                M(i,j) += ndx[d] * fe.shape_value_component(j,k,d)
                          * fetest.shape_value(i,k);
        }
    }

    /**
     * The trace of the divergence
     * operator, namely the product
     * of the normal component of the
     * vector valued trial space and
     * the test space.
     * @f[
     * \int_F (\mathbf u\cdot \mathbf n) v \,ds
     * @f]
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template<int dim, typename number>
    void
    u_dot_n_residual (
      Vector<number> &result,
      const FEValuesBase<dim> &fe,
      const FEValuesBase<dim> &fetest,
      const VectorSlice<const std::vector<std::vector<double> > > &data,
      double factor = 1.)
    {
      unsigned int fecomp = fe.get_fe().n_components();
      const unsigned int t_dofs = fetest.dofs_per_cell;

      AssertDimension(fecomp, dim);
      AssertDimension(fetest.get_fe().n_components(), 1);
      AssertDimension(result.size(), t_dofs);
      AssertVectorVectorDimension (data, dim, fe.n_quadrature_points);

      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          const Tensor<1,dim> ndx = factor * fe.normal_vector(k) * fe.JxW(k);

          for (unsigned int i=0; i<t_dofs; ++i)
            for (unsigned int d=0; d<dim; ++d)
              result(i) += ndx[d] * fetest.shape_value(i,k) * data[d][k];
        }
    }

    /**
     * The trace of the gradient
     * operator, namely the product
     * of the normal component of the
     * vector valued test space and
     * the trial space.
     * @f[
     * \int_F u (\mathbf v\cdot \mathbf n) \,ds
     * @f]
     *
     * @author Guido Kanschat
     * @date 2013
     */
    template<int dim, typename number>
    void
    u_times_n_residual (
      Vector<number> &result,
      const FEValuesBase<dim> &fetest,
      const std::vector<double> &data,
      double factor = 1.)
    {
      const unsigned int t_dofs = fetest.dofs_per_cell;

      AssertDimension(fetest.get_fe().n_components(), dim);
      AssertDimension(result.size(), t_dofs);
      AssertDimension(data.size(), fetest.n_quadrature_points);

      for (unsigned int k=0; k<fetest.n_quadrature_points; ++k)
        {
          const Tensor<1,dim> ndx = factor * fetest.normal_vector(k) * fetest.JxW(k);

          for (unsigned int i=0; i<t_dofs; ++i)
            for (unsigned int d=0; d<dim; ++d)
              result(i) += ndx[d] * fetest.shape_value_component(i,k,d) * data[k];
        }
    }

    /**
     * The trace of the divergence
     * operator, namely the product
     * of the jump of the normal component of the
     * vector valued trial function and
     * the mean value of the test function.
     * @f[
     * \int_F (\mathbf u_1\cdot \mathbf n_1 + \mathbf u_2 \cdot \mathbf n_2) \frac{v_1+v_2}{2} \,ds
     * @f]
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template<int dim>
    void
    u_dot_n_matrix (
      FullMatrix<double> &M11,
      FullMatrix<double> &M12,
      FullMatrix<double> &M21,
      FullMatrix<double> &M22,
      const FEValuesBase<dim> &fe1,
      const FEValuesBase<dim> &fe2,
      const FEValuesBase<dim> &fetest1,
      const FEValuesBase<dim> &fetest2,
      double factor = 1.)
    {
      const unsigned int n_dofs = fe1.dofs_per_cell;
      const unsigned int t_dofs = fetest1.dofs_per_cell;

      AssertDimension(fe1.get_fe().n_components(), dim);
      AssertDimension(fe2.get_fe().n_components(), dim);
      AssertDimension(fetest1.get_fe().n_components(), 1);
      AssertDimension(fetest2.get_fe().n_components(), 1);
      AssertDimension(M11.m(), t_dofs);
      AssertDimension(M11.n(), n_dofs);
      AssertDimension(M12.m(), t_dofs);
      AssertDimension(M12.n(), n_dofs);
      AssertDimension(M21.m(), t_dofs);
      AssertDimension(M21.n(), n_dofs);
      AssertDimension(M22.m(), t_dofs);
      AssertDimension(M22.n(), n_dofs);

      for (unsigned int k=0; k<fe1.n_quadrature_points; ++k)
        {
          const double dx = factor * fe1.JxW(k);
          for (unsigned int i=0; i<t_dofs; ++i)
            for (unsigned int j=0; j<n_dofs; ++j)
              for (unsigned int d=0; d<dim; ++d)
                {
                  const double un1 = fe1.shape_value_component(j,k,d) * fe1.normal_vector(k)[d];
                  const double un2 =-fe2.shape_value_component(j,k,d) * fe1.normal_vector(k)[d];
                  const double v1 = fetest1.shape_value(i,k);
                  const double v2 = fetest2.shape_value(i,k);

                  M11(i,j) += .5 * dx * un1 * v1;
                  M12(i,j) += .5 * dx * un2 * v1;
                  M21(i,j) += .5 * dx * un1 * v2;
                  M22(i,j) += .5 * dx * un2 * v2;
                }
        }
    }

    /**
     * The weak form of the grad-div operator penalizing volume changes
     * @f[
     *  \int_Z \nabla\!\cdot\!u \nabla\!\cdot\!v \,dx
     * @f]
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template <int dim>
    void grad_div_matrix (
      FullMatrix<double> &M,
      const FEValuesBase<dim> &fe,
      double factor = 1.)
    {
      const unsigned int n_dofs = fe.dofs_per_cell;

      AssertDimension(fe.get_fe().n_components(), dim);
      AssertDimension(M.m(), n_dofs);
      AssertDimension(M.n(), n_dofs);

      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          const double dx = factor * fe.JxW(k);
          for (unsigned int i=0; i<n_dofs; ++i)
            for (unsigned int j=0; j<n_dofs; ++j)
              {
                double dv = 0.;
                double du = 0.;
                for (unsigned int d=0; d<dim; ++d)
                  {
                    dv += fe.shape_grad_component(i,k,d)[d];
                    du += fe.shape_grad_component(j,k,d)[d];
                  }

                M(i,j) += dx * du * dv;
              }
        }
    }

    /**
     * The jump of the normal component
     * @f[
     * \int_F
     *  (\mathbf u_1\cdot \mathbf n_1 + \mathbf u_2 \cdot \mathbf n_2)
     *  (\mathbf v_1\cdot \mathbf n_1 + \mathbf v_2 \cdot \mathbf n_2)
     * \,ds
     * @f]
     *
     * @author Guido Kanschat
     * @date 2011
     */
    template<int dim>
    void
    u_dot_n_jump_matrix (
      FullMatrix<double> &M11,
      FullMatrix<double> &M12,
      FullMatrix<double> &M21,
      FullMatrix<double> &M22,
      const FEValuesBase<dim> &fe1,
      const FEValuesBase<dim> &fe2,
      double factor = 1.)
    {
      const unsigned int n_dofs = fe1.dofs_per_cell;

      AssertDimension(fe1.get_fe().n_components(), dim);
      AssertDimension(fe2.get_fe().n_components(), dim);
      AssertDimension(M11.m(), n_dofs);
      AssertDimension(M11.n(), n_dofs);
      AssertDimension(M12.m(), n_dofs);
      AssertDimension(M12.n(), n_dofs);
      AssertDimension(M21.m(), n_dofs);
      AssertDimension(M21.n(), n_dofs);
      AssertDimension(M22.m(), n_dofs);
      AssertDimension(M22.n(), n_dofs);

      for (unsigned int k=0; k<fe1.n_quadrature_points; ++k)
        {
          const double dx = factor * fe1.JxW(k);
          for (unsigned int i=0; i<n_dofs; ++i)
            for (unsigned int j=0; j<n_dofs; ++j)
              for (unsigned int d=0; d<dim; ++d)
                {
                  const double un1 = fe1.shape_value_component(j,k,d) * fe1.normal_vector(k)[d];
                  const double un2 =-fe2.shape_value_component(j,k,d) * fe1.normal_vector(k)[d];
                  const double vn1 = fe1.shape_value_component(i,k,d) * fe1.normal_vector(k)[d];
                  const double vn2 =-fe2.shape_value_component(i,k,d) * fe1.normal_vector(k)[d];

                  M11(i,j) += dx * un1 * vn1;
                  M12(i,j) += dx * un2 * vn1;
                  M21(i,j) += dx * un1 * vn2;
                  M22(i,j) += dx * un2 * vn2;
                }
        }
    }

    /**
     * The <i>L</i><sup>2</sup>-norm of the divergence over the
     * quadrature set determined by the FEValuesBase object.
     *
     * The vector is expected to consist of dim vectors of length
     * equal to the number of quadrature points. The number of
     * components of the finite element has to be equal to the space
     * dimension.
     *
     * @author Guido Kanschat
     * @date 2013
     */
    template <int dim>
    double norm(const FEValuesBase<dim> &fe,
                const VectorSlice<const std::vector<std::vector<Tensor<1,dim> > > > &Du)
    {
      unsigned int fecomp = fe.get_fe().n_components();

      AssertDimension(fecomp, dim);
      AssertVectorVectorDimension (Du, dim, fe.n_quadrature_points);

      double result = 0;
      for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
        {
          double div = Du[0][k][0];
          for (unsigned int d=1; d<dim; ++d)
            div += Du[d][k][d];
          result += div*div*fe.JxW(k);
        }
      return result;
    }

  }
}


DEAL_II_NAMESPACE_CLOSE

#endif