/usr/include/deal.II/integrators/l2.h is in libdeal.ii-dev 8.1.0-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 | // ---------------------------------------------------------------------
// $Id: l2.h 30036 2013-07-18 16:55:32Z maier $
//
// Copyright (C) 2010 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef __deal2__integrators_l2_h
#define __deal2__integrators_l2_h
#include <deal.II/base/config.h>
#include <deal.II/base/exceptions.h>
#include <deal.II/base/quadrature.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/fe/mapping.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/meshworker/dof_info.h>
DEAL_II_NAMESPACE_OPEN
namespace LocalIntegrators
{
/**
* @brief Local integrators related to <i>L<sup>2</sup></i>-inner products.
*
* @ingroup Integrators
* @author Guido Kanschat
* @date 2010
*/
namespace L2
{
/**
* The mass matrix for scalar or vector values finite elements.
* \f[
* \int_Z uv\,dx \quad \text{or} \quad \int_Z \mathbf u\cdot \mathbf v\,dx
* \f]
*
* Likewise, this term can be used on faces, where it computes the integrals
* \f[
* \int_F uv\,ds \quad \text{or} \quad \int_F \mathbf u\cdot \mathbf v\,ds
* \f]
*
* @author Guido Kanschat
* @date 2008, 2009, 2010
*/
template <int dim>
void mass_matrix (
FullMatrix<double> &M,
const FEValuesBase<dim> &fe,
const double factor = 1.)
{
const unsigned int n_dofs = fe.dofs_per_cell;
const unsigned int n_components = fe.get_fe().n_components();
for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
{
const double dx = fe.JxW(k) * factor;
for (unsigned int i=0; i<n_dofs; ++i)
for (unsigned int j=0; j<n_dofs; ++j)
for (unsigned int d=0; d<n_components; ++d)
M(i,j) += dx
* fe.shape_value_component(j,k,d)
* fe.shape_value_component(i,k,d);
}
}
/**
* <i>L<sup>2</sup></i>-inner product for scalar functions.
*
* \f[
* \int_Z fv\,dx \quad \text{or} \quad \int_F fv\,ds
* \f]
*
* @author Guido Kanschat
* @date 2008, 2009, 2010
*/
template <int dim, typename number>
void L2 (
Vector<number> &result,
const FEValuesBase<dim> &fe,
const std::vector<double> &input,
const double factor = 1.)
{
const unsigned int n_dofs = fe.dofs_per_cell;
AssertDimension(result.size(), n_dofs);
AssertDimension(fe.get_fe().n_components(), 1);
AssertDimension(input.size(), fe.n_quadrature_points);
for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
for (unsigned int i=0; i<n_dofs; ++i)
result(i) += fe.JxW(k) * factor * input[k] * fe.shape_value(i,k);
}
/**
* <i>L<sup>2</sup></i>-inner product for a slice of a vector valued
* right hand side.
* \f[
* \int_Z \mathbf f\cdot \mathbf v\,dx
* \quad \text{or} \quad
* \int_F \mathbf f\cdot \mathbf v\,ds
* \f]
*
* @author Guido Kanschat
* @date 2008, 2009, 2010
*/
template <int dim, typename number>
void L2 (
Vector<number> &result,
const FEValuesBase<dim> &fe,
const VectorSlice<const std::vector<std::vector<double> > > &input,
const double factor = 1.)
{
const unsigned int n_dofs = fe.dofs_per_cell;
const unsigned int fe_components = fe.get_fe().n_components();
const unsigned int n_components = input.size();
AssertDimension(result.size(), n_dofs);
AssertDimension(input.size(), fe_components);
for (unsigned int k=0; k<fe.n_quadrature_points; ++k)
for (unsigned int i=0; i<n_dofs; ++i)
for (unsigned int d=0; d<n_components; ++d)
result(i) += fe.JxW(k) * factor * fe.shape_value_component(i,k,d) * input[d][k];
}
/**
* The jump matrix between two cells for scalar or vector values
* finite elements. Note that the factor $\gamma$ can be used to
* implement weighted jumps.
* \f[
* \int_F [\gamma u][\gamma v]\,ds
* \quad \text{or}
* \int_F [\gamma \mathbf u]\cdot [\gamma \mathbf v]\,ds
* \f]
*
* Using appropriate weights, this term can be used to penalize
* violation of conformity in <i>H<sup>1</sup></i>.
*
* @author Guido Kanschat
* @date 2008, 2009, 2010
*/
template <int dim>
void jump_matrix (
FullMatrix<double> &M11,
FullMatrix<double> &M12,
FullMatrix<double> &M21,
FullMatrix<double> &M22,
const FEValuesBase<dim> &fe1,
const FEValuesBase<dim> &fe2,
const double factor1 = 1.,
const double factor2 = 1.)
{
const unsigned int n1_dofs = fe1.dofs_per_cell;
const unsigned int n2_dofs = fe2.dofs_per_cell;
const unsigned int n_components = fe1.get_fe().n_components();
Assert(n1_dofs == n2_dofs, ExcNotImplemented());
AssertDimension(n_components, fe2.get_fe().n_components());
AssertDimension(M11.m(), n1_dofs);
AssertDimension(M12.m(), n1_dofs);
AssertDimension(M21.m(), n2_dofs);
AssertDimension(M22.m(), n2_dofs);
AssertDimension(M11.n(), n1_dofs);
AssertDimension(M12.n(), n2_dofs);
AssertDimension(M21.n(), n1_dofs);
AssertDimension(M22.n(), n2_dofs);
for (unsigned int k=0; k<fe1.n_quadrature_points; ++k)
{
const double dx = fe1.JxW(k);
for (unsigned int i=0; i<n1_dofs; ++i)
for (unsigned int j=0; j<n1_dofs; ++j)
for (unsigned int d=0; d<n_components; ++d)
{
const double u1 = factor1*fe1.shape_value_component(j,k,d);
const double u2 =-factor2*fe2.shape_value_component(j,k,d);
const double v1 = factor1*fe1.shape_value_component(i,k,d);
const double v2 =-factor2*fe2.shape_value_component(i,k,d);
M11(i,j) += dx * u1*v1;
M12(i,j) += dx * u2*v1;
M21(i,j) += dx * u1*v2;
M22(i,j) += dx * u2*v2;
}
}
}
}
}
DEAL_II_NAMESPACE_CLOSE
#endif
|