This file is indexed.

/usr/include/deal.II/lac/full_matrix.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
// ---------------------------------------------------------------------
// $Id: full_matrix.h 31917 2013-12-07 16:30:01Z bangerth $
//
// Copyright (C) 1999 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__full_matrix_h
#define __deal2__full_matrix_h


#include <deal.II/base/config.h>
#include <deal.II/base/numbers.h>
#include <deal.II/base/table.h>
#include <deal.II/lac/exceptions.h>
#include <deal.II/lac/identity_matrix.h>
#include <deal.II/base/tensor.h>

#include <vector>
#include <iomanip>
#include <cstring>

DEAL_II_NAMESPACE_OPEN


// forward declarations
template <typename number> class Vector;
template <typename number> class LAPACKFullMatrix;


/*! @addtogroup Matrix1
 *@{
 */


/**
 * Implementation of a classical rectangular scheme of numbers. The
 * data type of the entries is provided in the template argument
 * <tt>number</tt>.  The interface is quite fat and in fact has grown every
 * time a new feature was needed. So, a lot of functions are provided.
 *
 * Internal calculations are usually done with the accuracy of the
 * vector argument to functions. If there is no argument with a number
 * type, the matrix number type is used.
 *
 * @note Instantiations for this template are provided for
 * <tt>@<float@>, @<double@>, @<long double@>,
 * @<std::complex@<float@>@>, @<std::complex@<double@>@>,
 * @<std::complex@<long double@>@></tt>; others can be generated in
 * application programs (see the section on @ref Instantiations in the
 * manual).
 *
 * @author Guido Kanschat, Franz-Theo Suttmeier, Wolfgang Bangerth, 1993-2004
 */
template <typename number>
class FullMatrix : public Table<2,number>
{
public:
  /**
   * A type of used to index into this container. Because we can not
   * expect to store matrices bigger than what can be indexed by a regular
   * unsigned integer, <code>unsigned int</code> is completely sufficient
   * as an index type.
   */
  typedef unsigned int size_type;

  /**
   * Type of matrix entries. In analogy to
   * the STL container classes.
   */
  typedef number value_type;


  /**
   * Declare a type that has holds
   * real-valued numbers with the
   * same precision as the template
   * argument to this class. If the
   * template argument of this
   * class is a real data type,
   * then real_type equals the
   * template argument. If the
   * template argument is a
   * std::complex type then
   * real_type equals the type
   * underlying the complex
   * numbers.
   *
   * This typedef is used to
   * represent the return type of
   * norms.
   */
  typedef typename numbers::NumberTraits<number>::real_type real_type;


  class const_iterator;

  /**
   * Accessor class for iterators
   */
  class Accessor
  {
  public:
    /**
     * Constructor. Since we use
     * accessors only for read
     * access, a const matrix
     * pointer is sufficient.
     */
    Accessor (const FullMatrix<number> *matrix,
              const size_type row,
              const size_type col);

    /**
     * Row number of the element
     * represented by this
     * object.
     */
    size_type row() const;

    /**
     * Column number of the
     * element represented by
     * this object.
     */
    size_type column() const;

    /**
     * Value of this matrix entry.
     */
    number value() const;

  protected:
    /**
     * The matrix accessed.
     */
    const FullMatrix<number> *matrix;

    /**
     * Current row number.
     */
    size_type a_row;

    /**
     * Current column number.
     */
    unsigned short a_col;

    /*
     * Make enclosing class a
     * friend.
     */
    friend class const_iterator;
  };

  /**
   * STL conforming iterator.
   */
  class const_iterator
  {
  public:
    /**
     * Constructor.
     */
    const_iterator(const FullMatrix<number> *matrix,
                   const size_type row,
                   const size_type col);

    /**
     * Prefix increment.
     */
    const_iterator &operator++ ();

    /**
     * Postfix increment.
     */
    const_iterator &operator++ (int);

    /**
     * Dereferencing operator.
     */
    const Accessor &operator* () const;

    /**
     * Dereferencing operator.
     */
    const Accessor *operator-> () const;

    /**
     * Comparison. True, if
     * both iterators point to
     * the same matrix
     * position.
     */
    bool operator == (const const_iterator &) const;
    /**
     * Inverse of <tt>==</tt>.
     */
    bool operator != (const const_iterator &) const;

    /**
     * Comparison operator. Result is
     * true if either the first row
     * number is smaller or if the row
     * numbers are equal and the first
     * index is smaller.
     */
    bool operator < (const const_iterator &) const;

    /**
     * Comparison operator. Compares just
     * the other way around than the
     * operator above.
     */
    bool operator > (const const_iterator &) const;

  private:
    /**
     * Store an object of the
     * accessor class.
     */
    Accessor accessor;
  };
  /**
   * @name Constructors and initalization.
   * See also the base class Table.
   */
//@{

  /**
   * Constructor. Initialize the
   * matrix as a square matrix with
   * dimension <tt>n</tt>.
   *
   * In order to avoid the implicit
   * conversion of integers and
   * other types to a matrix, this
   * constructor is declared
   * <tt>explicit</tt>.
   *
   * By default, no memory is
   * allocated.
   */
  explicit FullMatrix (const size_type n = 0);

  /**
   * Constructor. Initialize the
   * matrix as a rectangular
   * matrix.
   */
  FullMatrix (const size_type rows,
              const size_type cols);

  /**
   * Copy constructor. This
   * constructor does a deep copy
   * of the matrix. Therefore, it
   * poses a possible efficiency
   * problem, if for example,
   * function arguments are passed
   * by value rather than by
   * reference. Unfortunately, we
   * can't mark this copy
   * constructor <tt>explicit</tt>,
   * since that prevents the use of
   * this class in containers, such
   * as <tt>std::vector</tt>. The
   * responsibility to check
   * performance of programs must
   * therefore remain with the
   * user of this class.
   */
  FullMatrix (const FullMatrix &);

  /**
   * Constructor initializing from
   * an array of numbers. The array
   * is arranged line by line. No
   * range checking is performed.
   */
  FullMatrix (const size_type rows,
              const size_type cols,
              const number *entries);

  /**
   * Construct a full matrix that
   * equals the identity matrix of
   * the size of the
   * argument. Using this
   * constructor, one can easily
   * create an identity matrix of
   * size <code>n</code> by saying
   * @code
   * FullMatrix<double> M(IdentityMatrix(n));
   * @endcode
   */
  FullMatrix (const IdentityMatrix &id);
  /**
   * @}
   */

  /**
   * @name Copying into and out of other matrices
   */
  /**
   * @{
   */

  /**
   * Assignment operator.
   */
  FullMatrix<number> &
  operator = (const FullMatrix<number> &);

  /**
   * Variable assignment operator.
   */
  template <typename number2>
  FullMatrix<number> &
  operator = (const FullMatrix<number2> &);

  /**
   * This operator assigns a scalar
   * to a matrix. To avoid
   * confusion with the semantics
   * of this function, zero is the
   * only value allowed for
   * <tt>d</tt>, allowing you to
   * clear a matrix in an intuitive
   * way.
   */
  FullMatrix<number> &
  operator = (const number d);

  /**
   * Copy operator to create a full
   * matrix that equals the
   * identity matrix of the size of
   * the argument. This way, one can easily
   * create an identity matrix of
   * size <code>n</code> by saying
   * @code
   *   M = IdentityMatrix(n);
   * @endcode
   */
  FullMatrix<number> &
  operator = (const IdentityMatrix &id);

  /**
   * Assignment operator for a
   * LapackFullMatrix. The calling matrix
   * must be of the same size as the
   * LAPACK matrix.
   */
  template <typename number2>
  FullMatrix<number> &
  operator = (const LAPACKFullMatrix<number2> &);


  /**
   * Assignment from different
   * matrix classes. This
   * assignment operator uses
   * iterators of the class
   * MATRIX. Therefore, sparse
   * matrices are possible sources.
   */
  template <class MATRIX>
  void copy_from (const MATRIX &);

  /**
   * Transposing assignment from
   * different matrix classes. This
   * assignment operator uses
   * iterators of the class
   * MATRIX. Therefore, sparse
   * matrices are possible sources.
   */
  template <class MATRIX>
  void copy_transposed (const MATRIX &);

  /**
   * Fill matrix with elements
   * extracted from a tensor,
   * taking rows included between
   * <tt>r_i</tt> and <tt>r_j</tt>
   * and columns between
   * <tt>c_i</tt> and
   * <tt>c_j</tt>. The resulting
   * matrix is then inserted in the
   * destination matrix at position
   * <tt>(dst_r, dst_c)</tt> Checks
   * on the indices are made.
   */
  template <int dim>
  void
  copy_from (const Tensor<2,dim> &T,
             const size_type src_r_i=0,
             const size_type src_r_j=dim-1,
             const size_type src_c_i=0,
             const size_type src_c_j=dim-1,
             const size_type dst_r=0,
             const size_type dst_c=0);

  /**
   * Insert a submatrix (also
   * rectangular) into a tensor,
   * putting its upper left element
   * at the specified position
   * <tt>(dst_r, dst_c)</tt> and
   * the other elements
   * consequently. Default values
   * are chosen so that no
   * parameter needs to be specified
   * if the size of the tensor and
   * that of the matrix coincide.
   */
  template <int dim>
  void
  copy_to(Tensor<2,dim> &T,
          const size_type src_r_i=0,
          const size_type src_r_j=dim-1,
          const size_type src_c_i=0,
          const size_type src_c_j=dim-1,
          const size_type dst_r=0,
          const size_type dst_c=0) const;

  /**
   * Copy a subset of the rows and columns of another matrix into the
   * current object.
   *
   * @param matrix The matrix from which a subset is to be taken from.
   * @param row_index_set The set of rows of @p matrix from which to extract.
   * @param column_index_set The set of columns of @p matrix from which to extract.
   * @pre The number of elements in @p row_index_set and
   *      @p column_index_set shall be equal to the number of
   *      rows and columns in the current object. In other words,
   *      the current object is not resized for this operation.
   */
  template <typename MatrixType, typename index_type>
  void extract_submatrix_from (const MatrixType &matrix,
                               const std::vector<index_type> &row_index_set,
                               const std::vector<index_type> &column_index_set);

  /**
   * Copy the elements of the current matrix object into a specified
   * set of rows and columns of another matrix. Thus, this is a scatter operation.
   *
   * @param row_index_set The rows of @p matrix into which to write.
   * @param column_index_set The columns of @p matrix into which to write.
   * @param matrix The matrix within which certain elements are to be replaced.
   * @pre The number of elements in @p row_index_set and
   *      @p column_index_set shall be equal to the number of
   *      rows and columns in the current object. In other words,
   *      the current object is not resized for this operation.
   */
  template <typename MatrixType, typename index_type>
  void
  scatter_matrix_to (const std::vector<index_type> &row_index_set,
                     const std::vector<index_type> &column_index_set,
                     MatrixType &matrix) const;

  /**
   * Fill rectangular block.
   *
   * A rectangular block of the
   * matrix <tt>src</tt> is copied into
   * <tt>this</tt>. The upper left
   * corner of the block being
   * copied is
   * <tt>(src_offset_i,src_offset_j)</tt>.
   * The upper left corner of the
   * copied block is
   * <tt>(dst_offset_i,dst_offset_j)</tt>.
   * The size of the rectangular
   * block being copied is the
   * maximum size possible,
   * determined either by the size
   * of <tt>this</tt> or <tt>src</tt>.
   */
  template <typename number2>
  void fill (const FullMatrix<number2> &src,
             const size_type dst_offset_i = 0,
             const size_type dst_offset_j = 0,
             const size_type src_offset_i = 0,
             const size_type src_offset_j = 0);


  /**
   * Make function of base class
   * available.
   */
  template <typename number2>
  void fill (const number2 *);

  /**
   * Fill with permutation of
   * another matrix.
   *
   * The matrix <tt>src</tt> is copied
   * into the target. The two
   * permutation <tt>p_r</tt> and
   * <tt>p_c</tt> operate in a way, such
   * that <tt>result(i,j) =
   * src(p_r[i], p_c[j])</tt>.
   *
   * The vectors may also be a
   * selection from a larger set of
   * integers, if the matrix
   * <tt>src</tt> is bigger. It is also
   * possible to duplicate rows or
   * columns by this method.
   */
  template <typename number2>
  void fill_permutation (const FullMatrix<number2>       &src,
                         const std::vector<size_type> &p_rows,
                         const std::vector<size_type> &p_cols);

  /**
   * Set a particular entry of the matrix to a value. Thus, calling
   * <code>A.set(1,2,3.141);</code> is entirely equivalent to the operation
   * <code>A(1,2) = 3.141;</code>. This function exists for compatibility
   * with the various sparse matrix objects.
   *
   * @param i The row index of the element to be set.
   * @param j The columns index of the element to be set.
   * @param value The value to be written into the element.
   */
  void set (const size_type i,
            const size_type j,
            const number value);
  /**
   * @}
   */
  /**
   * @name Non-modifying operators
   */
  /**
   * @{
   */

  /**
   * Comparison operator. Be
   * careful with this thing, it
   * may eat up huge amounts of
   * computing time! It is most
   * commonly used for internal
   * consistency checks of
   * programs.
   */
  bool operator == (const FullMatrix<number> &) const;

  /**
   * Number of rows of this matrix.
   * To remember: this matrix is an
   * <i>m x n</i>-matrix.
   */
  size_type m () const;

  /**
   * Number of columns of this matrix.
   * To remember: this matrix is an
   * <i>m x n</i>-matrix.
   */
  size_type n () const;

  /**
   * Return whether the matrix
   * contains only elements with
   * value zero. This function is
   * mainly for internal
   * consistency checks and should
   * seldom be used when not in
   * debug mode since it uses quite
   * some time.
   */
  bool all_zero () const;

  /**
   * Return the square of the norm
   * of the vector <tt>v</tt> induced by
   * this matrix,
   * i.e. <i>(v,Mv)</i>. This is
   * useful, e.g. in the finite
   * element context, where the
   * <i>L<sup>2</sup></i> norm of a
   * function equals the matrix
   * norm with respect to the mass
   * matrix of the vector
   * representing the nodal values
   * of the finite element
   * function.
   *
   * Obviously, the matrix needs to be
   * quadratic for this operation, and for
   * the result to actually be a norm it
   * also needs to be either real symmetric
   * or complex hermitian.
   *
   * The underlying template types of both
   * this matrix and the given vector
   * should either both be real or
   * complex-valued, but not mixed, for
   * this function to make sense.
   */
  template <typename number2>
  number2 matrix_norm_square (const Vector<number2> &v) const;

  /**
   * Build the matrix scalar
   * product <tt>u<sup>T</sup> M
   * v</tt>. This function is
   * mostly useful when building
   * the cellwise scalar product of
   * two functions in the finite
   * element context.
   *
   * The underlying template types of both
   * this matrix and the given vector
   * should either both be real or
   * complex-valued, but not mixed, for
   * this function to make sense.
   */
  template <typename number2>
  number2 matrix_scalar_product (const Vector<number2> &u,
                                 const Vector<number2> &v) const;

  /**
   * Return the
   * <i>l<sub>1</sub></i>-norm of
   * the matrix, where
   * $||M||_1 = \max_j \sum_i
   * |M_{ij}|$ (maximum of
   * the sums over columns).
   */
  real_type l1_norm () const;

  /**
   * Return the $l_\infty$-norm of
   * the matrix, where
   * $||M||_\infty = \max_i \sum_j
   * |M_{ij}|$ (maximum of the sums
   * over rows).
   */
  real_type linfty_norm () const;

  /**
   * Compute the Frobenius norm of
   * the matrix.  Return value is
   * the root of the square sum of
   * all matrix entries.
   *
   * @note For the timid among us:
   * this norm is not the norm
   * compatible with the
   * <i>l<sub>2</sub></i>-norm of
   * the vector space.
   */
  real_type frobenius_norm () const;

  /**
   * Compute the relative norm of
   * the skew-symmetric part. The
   * return value is the Frobenius
   * norm of the skew-symmetric
   * part of the matrix divided by
   * that of the matrix.
   *
   * Main purpose of this function
   * is to check, if a matrix is
   * symmetric within a certain
   * accuracy, or not.
   */
  real_type relative_symmetry_norm2 () const;

  /**
   * Computes the determinant of a
   * matrix.  This is only
   * implemented for one, two, and
   * three dimensions, since for
   * higher dimensions the
   * numerical work explodes.
   * Obviously, the matrix needs to
   * be quadratic for this function.
   */
  number determinant () const;

  /**
   * Return the trace of the matrix,
   * i.e. the sum of the diagonal values
   * (which happens to also equal the sum
   * of the eigenvalues of a matrix).
   * Obviously, the matrix needs to
   * be quadratic for this function.
   */
  number trace () const;

  /**
   * Output of the matrix in user-defined format given by the specified
   * precision and width. This function saves width and precision of the
   * stream before setting these given values for output, and restores the
   * previous values after output.
   */
  template <class STREAM>
  void print (STREAM             &s,
              const unsigned int  width=5,
              const unsigned int  precision=2) const;

  /**
   * Print the matrix and allow
   * formatting of entries.
   *
   * The parameters allow for a
   * flexible setting of the output
   * format:
   *
   * @arg <tt>precision</tt>
   * denotes the number of trailing
   * digits.
   *
   * @arg <tt>scientific</tt> is
   * used to determine the number
   * format, where
   * <tt>scientific</tt> =
   * <tt>false</tt> means fixed
   * point notation.
   *
   * @arg <tt>width</tt> denotes
   * the with of each column. A
   * zero entry for <tt>width</tt>
   * makes the function compute a
   * width, but it may be changed
   * to a positive value, if output
   * is crude.
   *
   * @arg <tt>zero_string</tt>
   * specifies a string printed for
   * zero entries.
   *
   * @arg <tt>denominator</tt>
   * Multiply the whole matrix by
   * this common denominator to get
   * nicer numbers.
   *
   * @arg <tt>threshold</tt>: all
   * entries with absolute value
   * smaller than this are
   * considered zero.
  */
  void print_formatted (std::ostream       &out,
                        const unsigned int  precision=3,
                        const bool          scientific  = true,
                        const unsigned int  width       = 0,
                        const char         *zero_string = " ",
                        const double        denominator = 1.,
                        const double        threshold   = 0.) const;

  /**
   * Determine an estimate for the
   * memory consumption (in bytes)
   * of this object.
   */
  std::size_t memory_consumption () const;

//@}
///@name Iterator functions
//@{

  /**
   * STL-like iterator with the
   * first entry.
   */
  const_iterator begin () const;

  /**
   * Final iterator.
   */
  const_iterator end () const;

  /**
   * STL-like iterator with the
   * first entry of row <tt>r</tt>.
   */
  const_iterator begin (const size_type r) const;

  /**
   * Final iterator of row <tt>r</tt>.
   */
  const_iterator end (const size_type r) const;

//@}
///@name Modifying operators
//@{

  /**
   * Scale the entire matrix by a
   * fixed factor.
   */
  FullMatrix &operator *= (const number factor);

  /**
   * Scale the entire matrix by the
   * inverse of the given factor.
   */
  FullMatrix &operator /= (const number factor);

  /**
   * Simple addition of a scaled
   * matrix, i.e. <tt>*this +=
   * a*A</tt>.
   *
   * The matrix <tt>A</tt> may be a
   * full matrix over an arbitrary
   * underlying scalar type, as
   * long as its data type is
   * convertible to the data type
   * of this matrix.
   */
  template <typename number2>
  void add (const number               a,
            const FullMatrix<number2> &A);

  /**
   * Multiple addition of scaled
   * matrices, i.e. <tt>*this +=
   * a*A + b*B</tt>.
   *
   * The matrices <tt>A</tt> and
   * <tt>B</tt> may be a full
   * matrix over an arbitrary
   * underlying scalar type, as
   * long as its data type is
   * convertible to the data type
   * of this matrix.
   */
  template <typename number2>
  void add (const number               a,
            const FullMatrix<number2> &A,
            const number               b,
            const FullMatrix<number2> &B);

  /**
   * Multiple addition of scaled
   * matrices, i.e. <tt>*this +=
   * a*A + b*B + c*C</tt>.
   *
   * The matrices <tt>A</tt>,
   * <tt>B</tt> and <tt>C</tt> may
   * be a full matrix over an
   * arbitrary underlying scalar
   * type, as long as its data type
   * is convertible to the data
   * type of this matrix.
   */
  template <typename number2>
  void add (const number               a,
            const FullMatrix<number2> &A,
            const number               b,
            const FullMatrix<number2> &B,
            const number               c,
            const FullMatrix<number2> &C);

  /**
   * Add rectangular block.
   *
   * A rectangular block of the matrix
   * <tt>src</tt> is added to
   * <tt>this</tt>. The upper left corner
   * of the block being copied is
   * <tt>(src_offset_i,src_offset_j)</tt>.
   * The upper left corner of the copied
   * block is
   * <tt>(dst_offset_i,dst_offset_j)</tt>.
   * The size of the rectangular block
   * being copied is the maximum size
   * possible, determined either by the
   * size of <tt>this</tt> or <tt>src</tt>
   * and the given offsets.
   */
  template <typename number2>
  void add (const FullMatrix<number2> &src,
            const number factor,
            const size_type dst_offset_i = 0,
            const size_type dst_offset_j = 0,
            const size_type src_offset_i = 0,
            const size_type src_offset_j = 0);

  /**
   * Weighted addition of the
   * transpose of <tt>B</tt> to
   * <tt>this</tt>.
   *
   * <i>A += s B<sup>T</sup></i>
   */
  template <typename number2>
  void Tadd (const number               s,
             const FullMatrix<number2> &B);

  /**
   * Add transpose of a rectangular block.
   *
   * A rectangular block of the
   * matrix <tt>src</tt> is
   * transposed and addedadded to
   * <tt>this</tt>. The upper left
   * corner of the block being
   * copied is
   * <tt>(src_offset_i,src_offset_j)</tt>
   * in the coordinates of the
   * <b>non</b>-transposed matrix.
   * The upper left corner of the
   * copied block is
   * <tt>(dst_offset_i,dst_offset_j)</tt>.
   * The size of the rectangular
   * block being copied is the
   * maximum size possible,
   * determined either by the size
   * of <tt>this</tt> or
   * <tt>src</tt>.
   */
  template <typename number2>
  void Tadd (const FullMatrix<number2> &src,
             const number               factor,
             const size_type dst_offset_i = 0,
             const size_type dst_offset_j = 0,
             const size_type src_offset_i = 0,
             const size_type src_offset_j = 0);

  /**
   * Add a single element at the
   * given position.
   */
  void add (const size_type row,
            const size_type column,
            const number value);

  /**
   * Add an array of values given by
   * <tt>values</tt> in the given global
   * matrix row at columns specified by
   * col_indices in the full matrix. This
   * function is present for
   * compatibility with the various
   * sparse matrices in deal.II. In
   * particular, the two boolean fields
   * @p elide_zero_values and @p
   * col_indices_are_sorted do not impact
   * the performance of this routine, as
   * opposed to the sparse matrix case
   * and are indeed ignored in the
   * implementation.
   */
  template <typename number2, typename index_type>
  void add (const size_type     row,
            const unsigned int  n_cols,
            const index_type   *col_indices,
            const number2      *values,
            const bool          elide_zero_values = true,
            const bool          col_indices_are_sorted = false);

  /**
   * <i>A(i,1...n) +=
   * s*A(j,1...n)</i>.  Simple
   * addition of rows of this
   */
  void add_row (const size_type i,
                const number    s,
                const size_type j);

  /**
   * <i>A(i,1...n) += s*A(j,1...n) +
   * t*A(k,1...n)</i>.  Multiple
   * addition of rows of this.
   */
  void add_row (const size_type i,
                const number s, const size_type j,
                const number t, const size_type k);

  /**
   * <i>A(1...n,i) += s*A(1...n,j)</i>.
   *  Simple addition of columns of this.
   */
  void add_col (const size_type i,
                const number    s,
                const size_type j);

  /**
   * <i>A(1...n,i) += s*A(1...n,j) +
   * t*A(1...n,k)</i>.  Multiple
   * addition of columns of this.
   */
  void add_col (const size_type i,
                const number s, const size_type j,
                const number t, const size_type k);

  /**
   * Swap <i>A(i,1...n) <->
   * A(j,1...n)</i>.  Swap rows i
   * and j of this
   */
  void swap_row (const size_type i,
                 const size_type j);

  /**
   *  Swap <i>A(1...n,i) <->
   *  A(1...n,j)</i>.  Swap columns
   *  i and j of this
   */
  void swap_col (const size_type i,
                 const size_type j);

  /**
   * Add constant to diagonal
   * elements of this, i.e. add a
   * multiple of the identity
   * matrix.
   */
  void diagadd (const number s);

  /**
   * Assignment <tt>*this =
   * a*A</tt>.
   */
  template <typename number2>
  void equ (const number               a,
            const FullMatrix<number2> &A);

  /**
   * Assignment <tt>*this = a*A +
   * b*B</tt>.
   */
  template <typename number2>
  void equ (const number               a,
            const FullMatrix<number2> &A,
            const number               b,
            const FullMatrix<number2> &B);

  /**
   * Assignment <tt>*this = a*A +
   * b*B + c*C</tt>.
   */
  template <typename number2>
  void equ (const number               a,
            const FullMatrix<number2> &A,
            const number               b,
            const FullMatrix<number2> &B,
            const number               c,
            const FullMatrix<number2> &C);

  /**
   * Symmetrize the matrix by
   * forming the mean value between
   * the existing matrix and its
   * transpose, <i>A =
   * 1/2(A+A<sup>T</sup>)</i>.
   *
   * Obviously the matrix must be
   * quadratic for this operation.
   */
  void symmetrize ();

  /**
   * A=Inverse(A). A must be a square matrix.
   * Inversion of
   * this matrix by Gauss-Jordan
   * algorithm with partial
   * pivoting.  This process is
   * well-behaved for positive
   * definite matrices, but be
   * aware of round-off errors in
   * the indefinite case.
   *
   * In case deal.II was configured with
   * LAPACK, the functions Xgetrf and
   * Xgetri build an LU factorization and
   * invert the matrix upon that
   * factorization, providing best
   * performance up to matrices with a
   * few hundreds rows and columns.
   *
   * The numerical effort to invert
   * an <tt>n x n</tt> matrix is of the
   * order <tt>n**3</tt>.
   */
  void gauss_jordan ();

  /**
   * Assign the inverse of the given matrix
   * to <tt>*this</tt>. This function is
   * hardcoded for quadratic matrices of
   * dimension one to four. However, since
   * the amount of code needed grows
   * quickly, the method gauss_jordan() is
   * invoked implicitly if the dimension is
   * larger.
   */
  template <typename number2>
  void invert (const FullMatrix<number2> &M);

  /**
   * Assign the Cholesky decomposition
   * of the given matrix to <tt>*this</tt>.
   * The given matrix must be symmetric
   * positive definite.
   *
   * ExcMatrixNotPositiveDefinite
   * will be thrown in the case that the
   * matrix is not positive definite.
   */
  template <typename number2>
  void cholesky (const FullMatrix<number2> &A);

  /**
   * <tt>*this(i,j)</tt> = $V(i) W(j)$
   * where $V,W$
   * are vectors of the same length.
   */
  template <typename number2>
  void outer_product (const Vector<number2> &V,
                      const Vector<number2> &W);

  /**
   * Assign the left_inverse of the given matrix
   * to <tt>*this</tt>. The calculation being
   * performed is <i>(A<sup>T</sup>*A)<sup>-1</sup>
   * *A<sup>T</sup></i>.
   */
  template <typename number2>
  void left_invert (const FullMatrix<number2> &M);

  /**
   * Assign the right_inverse of the given matrix
   * to <tt>*this</tt>. The calculation being
   * performed is <i>A<sup>T</sup>*(A*A<sup>T</sup>)
   * <sup>-1</sup></i>.
   */
  template <typename number2>
  void right_invert (const FullMatrix<number2> &M);

//@}
///@name Multiplications
//@{

  /**
   * Matrix-matrix-multiplication.
   *
   * The optional parameter
   * <tt>adding</tt> determines, whether the
   * result is stored in <tt>C</tt> or added
   * to <tt>C</tt>.
   *
   * if (adding)
   *  <i>C += A*B</i>
   *
   * if (!adding)
   *  <i>C = A*B</i>
   *
   * Assumes that <tt>A</tt> and
   * <tt>B</tt> have compatible sizes and
   * that <tt>C</tt> already has the
   * right size.
   *
   * This function uses the BLAS function
   * Xgemm if the calling matrix has more
   * than 15 rows and BLAS was detected
   * during configuration. Using BLAS
   * usually results in considerable
   * performance gains.
   */
  template <typename number2>
  void mmult (FullMatrix<number2>       &C,
              const FullMatrix<number2> &B,
              const bool                 adding=false) const;

  /**
   * Matrix-matrix-multiplication using
   * transpose of <tt>this</tt>.
   *
   * The optional parameter
   * <tt>adding</tt> determines, whether the
   * result is stored in <tt>C</tt> or added
   * to <tt>C</tt>.
   *
   * if (adding)
   *  <i>C += A<sup>T</sup>*B</i>
   *
   * if (!adding)
   *  <i>C = A<sup>T</sup>*B</i>
   *
   * Assumes that <tt>A</tt> and
   * <tt>B</tt> have compatible
   * sizes and that <tt>C</tt>
   * already has the right size.
   *
   * This function uses the BLAS function
   * Xgemm if the calling matrix has more
   * than 15 columns and BLAS was
   * detected during configuration. Using
   * BLAS usually results in considerable
   * performance gains.
   */
  template <typename number2>
  void Tmmult (FullMatrix<number2>       &C,
               const FullMatrix<number2> &B,
               const bool                 adding=false) const;

  /**
   * Matrix-matrix-multiplication using
   * transpose of <tt>B</tt>.
   *
   * The optional parameter
   * <tt>adding</tt> determines, whether the
   * result is stored in <tt>C</tt> or added
   * to <tt>C</tt>.
   *
   * if (adding)
   *  <i>C += A*B<sup>T</sup></i>
   *
   * if (!adding)
   *  <i>C = A*B<sup>T</sup></i>
   *
   * Assumes that <tt>A</tt> and
   * <tt>B</tt> have compatible sizes and
   * that <tt>C</tt> already has the
   * right size.
   *
   * This function uses the BLAS function
   * Xgemm if the calling matrix has more
   * than 15 rows and BLAS was detected
   * during configuration. Using BLAS
   * usually results in considerable
   * performance gains.
   */
  template <typename number2>
  void mTmult (FullMatrix<number2>       &C,
               const FullMatrix<number2> &B,
               const bool                 adding=false) const;

  /**
   * Matrix-matrix-multiplication using
   * transpose of <tt>this</tt> and
   * <tt>B</tt>.
   *
   * The optional parameter
   * <tt>adding</tt> determines, whether the
   * result is stored in <tt>C</tt> or added
   * to <tt>C</tt>.
   *
   * if (adding)
   *  <i>C += A<sup>T</sup>*B<sup>T</sup></i>
   *
   * if (!adding)
   *  <i>C = A<sup>T</sup>*B<sup>T</sup></i>
   *
   * Assumes that <tt>A</tt> and
   * <tt>B</tt> have compatible
   * sizes and that <tt>C</tt>
   * already has the right size.
   *
   * This function uses the BLAS function
   * Xgemm if the calling matrix has more
   * than 15 columns and BLAS was
   * detected during configuration. Using
   * BLAS usually results in considerable
   * performance gains.
   */
  template <typename number2>
  void TmTmult (FullMatrix<number2>       &C,
                const FullMatrix<number2> &B,
                const bool                 adding=false) const;

  /**
   * Add to the current matrix the
   * triple product <b>B A
   * D</b>. Optionally, use the
   * transposes of the matrices
   * <b>B</b> and <b>D</b>. The
   * scaling factor scales the
   * whole product, which is
   * helpful when adding a multiple
   * of the triple product to the
   * matrix.
   *
   * This product was written with
   * the Schur complement
   * <b>B<sup>T</sup>
   * A<sup>-1</sup> D</b> in mind.
   * Note that in this case the
   * argument for <tt>A</tt> must be
   * the inverse of the matrix <b>A</b>.
   */
  void triple_product(const FullMatrix<number> &A,
                      const FullMatrix<number> &B,
                      const FullMatrix<number> &D,
                      const bool transpose_B = false,
                      const bool transpose_D = false,
                      const number scaling = number(1.));

  /**
   * Matrix-vector-multiplication.
   *
   * The optional parameter
   * <tt>adding</tt> determines, whether the
   * result is stored in <tt>w</tt> or added
   * to <tt>w</tt>.
   *
   * if (adding)
   *  <i>w += A*v</i>
   *
   * if (!adding)
   *  <i>w = A*v</i>
   *
   * Source and destination must
   * not be the same vector.
   */
  template <typename number2>
  void vmult (Vector<number2>       &w,
              const Vector<number2> &v,
              const bool             adding=false) const;

  /**
   * Adding Matrix-vector-multiplication.
   *  <i>w += A*v</i>
   *
   * Source and destination must
   * not be the same vector.
   */
  template <typename number2>
  void vmult_add (Vector<number2>       &w,
                  const Vector<number2> &v) const;

  /**
   * Transpose
   * matrix-vector-multiplication.
   *
   * The optional parameter
   * <tt>adding</tt> determines, whether the
   * result is stored in <tt>w</tt> or added
   * to <tt>w</tt>.
   *
   * if (adding)
   *  <i>w += A<sup>T</sup>*v</i>
   *
   * if (!adding)
   *  <i>w = A<sup>T</sup>*v</i>
   *
   *
   * Source and destination must
   * not be the same vector.
   */
  template <typename number2>
  void Tvmult (Vector<number2>       &w,
               const Vector<number2> &v,
               const bool             adding=false) const;

  /**
   * Adding transpose
   * matrix-vector-multiplication.
   *  <i>w += A<sup>T</sup>*v</i>
   *
   * Source and destination must
   * not be the same vector.
   */
  template <typename number2>
  void Tvmult_add (Vector<number2>       &w,
                   const Vector<number2> &v) const;

  /**
   * Apply the Jacobi
   * preconditioner, which
   * multiplies every element of
   * the <tt>src</tt> vector by the
   * inverse of the respective
   * diagonal element and
   * multiplies the result with the
   * damping factor <tt>omega</tt>.
   */
  template <typename somenumber>
  void precondition_Jacobi (Vector<somenumber>       &dst,
                            const Vector<somenumber> &src,
                            const number              omega = 1.) const;

  /**
   * <i>dst=b-A*x</i>. Residual calculation,
   * returns the <i>l<sub>2</sub></i>-norm
   * |<i>dst</i>|.
   *
   * Source <i>x</i> and destination
   * <i>dst</i> must not be the same
   * vector.
   */
  template <typename number2, typename number3>
  number residual (Vector<number2>       &dst,
                   const Vector<number2> &x,
                   const Vector<number3> &b) const;

  /**
   * Forward elimination of lower
   * triangle.  Inverts the lower
   * triangle of a rectangular matrix
   * for a given right hand side.
   *
   * If the matrix has more columns
   * than rows, this function only
   * operates on the left quadratic
   * submatrix. If there are more
   * rows, the upper quadratic part
   * of the matrix is considered.
   *
   * @note It is safe to use the
   * same object for @p dst and @p
   * src.
   */
  template <typename number2>
  void forward (Vector<number2>       &dst,
                const Vector<number2> &src) const;

  /**
   * Backward elimination of upper
   * triangle.
   *
   * See forward()
   *
   * @note It is safe to use the
   * same object for @p dst and @p
   * src.
   */
  template <typename number2>
  void backward (Vector<number2>       &dst,
                 const Vector<number2> &src) const;

  //@}

  /** @addtogroup Exceptions
   * @{ */

  /**
   * Exception
   */
  DeclException0 (ExcEmptyMatrix);

  /**
   * Exception
   */
  DeclException1 (ExcNotRegular,
                  number,
                  << "The maximal pivot is " << arg1
                  << ", which is below the threshold. The matrix may be singular.");
  /**
   * Exception
   */
  DeclException3 (ExcInvalidDestination,
                  size_type, size_type, size_type,
                  << "Target region not in matrix: size in this direction="
                  << arg1 << ", size of new matrix=" << arg2
                  << ", offset=" << arg3);
  /**
   * Exception
   */
  DeclException0 (ExcSourceEqualsDestination);
  /**
   * Exception
   */
  DeclException0 (ExcMatrixNotPositiveDefinite);
  //@}

  friend class Accessor;
};

/**@}*/

#ifndef DOXYGEN
/*-------------------------Inline functions -------------------------------*/




template <typename number>
inline
typename FullMatrix<number>::size_type
FullMatrix<number>::m() const
{
  return this->n_rows();
}



template <typename number>
inline
typename FullMatrix<number>::size_type
FullMatrix<number>::n() const
{
  return this->n_cols();
}



template <typename number>
FullMatrix<number> &
FullMatrix<number>::operator = (const number d)
{
  Assert (d==number(0), ExcScalarAssignmentOnlyForZeroValue());
  (void)d; // removes -Wunused-parameter warning in optimized mode

  if (this->n_elements() != 0)
    std::memset (&this->values[0], 0, this->n_elements()*sizeof(number));

  return *this;
}



template <typename number>
template <typename number2>
inline
void FullMatrix<number>::fill (const number2 *src)
{
  Table<2,number>::fill(src);
}



template <typename number>
template <class MATRIX>
void
FullMatrix<number>::copy_from (const MATRIX &M)
{
  this->reinit (M.m(), M.n());

  // loop over the elements of the argument matrix row by row, as suggested
  // in the documentation of the sparse matrix iterator class, and
  // copy them into the current object
  for (size_type row = 0; row < M.m(); ++row)
    {
      const typename MATRIX::const_iterator end_row = M.end(row);
      for (typename MATRIX::const_iterator entry = M.begin(row);
           entry != end_row; ++entry)
        this->el(row, entry->column()) = entry->value();
    }
}



template <typename number>
template <class MATRIX>
void
FullMatrix<number>::copy_transposed (const MATRIX &M)
{
  this->reinit (M.n(), M.m());

  // loop over the elements of the argument matrix row by row, as suggested
  // in the documentation of the sparse matrix iterator class, and
  // copy them into the current object
  for (size_type row = 0; row < M.m(); ++row)
    {
      const typename MATRIX::const_iterator end_row = M.end(row);
      for (typename MATRIX::const_iterator entry = M.begin(row);
           entry != end_row; ++entry)
        this->el(entry->column(), row) = entry->value();
    }
}



template <typename number>
template <typename MatrixType, typename index_type>
inline
void
FullMatrix<number>::extract_submatrix_from (const MatrixType &matrix,
                                            const std::vector<index_type> &row_index_set,
                                            const std::vector<index_type> &column_index_set)
{
  AssertDimension(row_index_set.size(), this->n_rows());
  AssertDimension(column_index_set.size(), this->n_cols());

  const size_type n_rows_submatrix = row_index_set.size();
  const size_type n_cols_submatrix = column_index_set.size();

  for (size_type sub_row = 0; sub_row < n_rows_submatrix; ++sub_row)
    for (size_type sub_col = 0; sub_col < n_cols_submatrix; ++sub_col)
      (*this)(sub_row, sub_col) = matrix.el(row_index_set[sub_row], column_index_set[sub_col]);
}



template <typename number>
template <typename MatrixType, typename index_type>
inline
void
FullMatrix<number>::scatter_matrix_to (const std::vector<index_type> &row_index_set,
                                       const std::vector<index_type> &column_index_set,
                                       MatrixType &matrix) const
{
  AssertDimension(row_index_set.size(), this->n_rows());
  AssertDimension(column_index_set.size(), this->n_cols());

  const size_type n_rows_submatrix = row_index_set.size();
  const size_type n_cols_submatrix = column_index_set.size();

  for (size_type sub_row = 0; sub_row < n_rows_submatrix; ++sub_row)
    for (size_type sub_col = 0; sub_col < n_cols_submatrix; ++sub_col)
      matrix.set(row_index_set[sub_row],
                 column_index_set[sub_col],
                 (*this)(sub_row, sub_col));
}


template <typename number>
inline
void
FullMatrix<number>::set (const size_type i,
                         const size_type j,
                         const number value)
{
  (*this)(i,j) = value;
}



template <typename number>
template <typename number2>
void
FullMatrix<number>::vmult_add (Vector<number2>       &w,
                               const Vector<number2> &v) const
{
  vmult(w, v, true);
}


template <typename number>
template <typename number2>
void
FullMatrix<number>::Tvmult_add (Vector<number2>       &w,
                                const Vector<number2> &v) const
{
  Tvmult(w, v, true);
}


//---------------------------------------------------------------------------


template <typename number>
inline
FullMatrix<number>::Accessor::
Accessor (const FullMatrix<number> *matrix,
          const size_type r,
          const size_type c)
  :
  matrix(matrix),
  a_row(r),
  a_col(c)
{}


template <typename number>
inline
typename FullMatrix<number>::size_type
FullMatrix<number>::Accessor::row() const
{
  return a_row;
}


template <typename number>
inline
typename FullMatrix<number>::size_type
FullMatrix<number>::Accessor::column() const
{
  return a_col;
}


template <typename number>
inline
number
FullMatrix<number>::Accessor::value() const
{
  Assert (numbers::is_finite( matrix->el(a_row, a_col) ), ExcNumberNotFinite());
  return matrix->el(a_row, a_col);
}


template <typename number>
inline
FullMatrix<number>::const_iterator::
const_iterator(const FullMatrix<number> *matrix,
               const size_type r,
               const size_type c)
  :
  accessor(matrix, r, c)
{}


template <typename number>
inline
typename FullMatrix<number>::const_iterator &
FullMatrix<number>::const_iterator::operator++ ()
{
  Assert (accessor.a_row < accessor.matrix->m(), ExcIteratorPastEnd());

  ++accessor.a_col;
  if (accessor.a_col >= accessor.matrix->n())
    {
      accessor.a_col = 0;
      accessor.a_row++;
    }
  return *this;
}


template <typename number>
inline
const typename FullMatrix<number>::Accessor &
FullMatrix<number>::const_iterator::operator* () const
{
  return accessor;
}


template <typename number>
inline
const typename FullMatrix<number>::Accessor *
FullMatrix<number>::const_iterator::operator-> () const
{
  return &accessor;
}


template <typename number>
inline
bool
FullMatrix<number>::const_iterator::
operator == (const const_iterator &other) const
{
  return (accessor.row() == other.accessor.row() &&
          accessor.column() == other.accessor.column());
}


template <typename number>
inline
bool
FullMatrix<number>::const_iterator::
operator != (const const_iterator &other) const
{
  return ! (*this == other);
}


template <typename number>
inline
bool
FullMatrix<number>::const_iterator::
operator < (const const_iterator &other) const
{
  return (accessor.row() < other.accessor.row() ||
          (accessor.row() == other.accessor.row() &&
           accessor.column() < other.accessor.column()));
}


template <typename number>
inline
bool
FullMatrix<number>::const_iterator::
operator > (const const_iterator &other) const
{
  return (other < *this);
}


template <typename number>
inline
typename FullMatrix<number>::const_iterator
FullMatrix<number>::begin () const
{
  return const_iterator(this, 0, 0);
}


template <typename number>
inline
typename FullMatrix<number>::const_iterator
FullMatrix<number>::end () const
{
  return const_iterator(this, m(), 0);
}


template <typename number>
inline
typename FullMatrix<number>::const_iterator
FullMatrix<number>::begin (const size_type r) const
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return const_iterator(this, r, 0);
}



template <typename number>
inline
typename FullMatrix<number>::const_iterator
FullMatrix<number>::end (const size_type r) const
{
  Assert (r<m(), ExcIndexRange(r,0,m()));
  return const_iterator(this, r+1, 0);
}



template <typename number>
inline
void
FullMatrix<number>::add (const size_type r, const size_type c, const number v)
{
  AssertIndexRange(r, this->m());
  AssertIndexRange(c, this->n());

  this->operator()(r,c) += v;
}



template <typename number>
template <typename number2, typename index_type>
inline
void
FullMatrix<number>::add (const size_type    row,
                         const unsigned int n_cols,
                         const index_type  *col_indices,
                         const number2     *values,
                         const bool,
                         const bool)
{
  AssertIndexRange(row, this->m());
  for (size_type col=0; col<n_cols; ++col)
    {
      AssertIndexRange(col_indices[col], this->n());
      this->operator()(row,col_indices[col]) += values[col];
    }
}


template <typename number>
template <class STREAM>
inline
void
FullMatrix<number>::print (STREAM             &s,
                           const unsigned int  w,
                           const unsigned int  p) const
{
  Assert (!this->empty(), ExcEmptyMatrix());

  // save the state of out stream
  const unsigned int old_precision = s.precision (p);
  const unsigned int old_width = s.width (w);

  for (size_type i=0; i<this->m(); ++i)
    {
      for (size_type j=0; j<this->n(); ++j)
        {
          s.width(w);
          s.precision(p);
          s << this->el(i,j);
        }
      s << std::endl;
    }

  // reset output format
  s.precision(old_precision);
  s.width(old_width);
}


#endif // DOXYGEN

DEAL_II_NAMESPACE_CLOSE

#endif