This file is indexed.

/usr/include/deal.II/lac/lapack_full_matrix.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
// ---------------------------------------------------------------------
// $Id: lapack_full_matrix.h 30040 2013-07-18 17:06:48Z maier $
//
// Copyright (C) 2005 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__lapack_full_matrix_h
#define __deal2__lapack_full_matrix_h


#include <deal.II/base/config.h>
#include <deal.II/base/smartpointer.h>
#include <deal.II/base/table.h>
#include <deal.II/lac/lapack_support.h>
#include <deal.II/lac/vector_memory.h>

#include <deal.II/base/std_cxx1x/shared_ptr.h>
#include <vector>
#include <complex>

DEAL_II_NAMESPACE_OPEN

// forward declarations
template<typename number> class Vector;
template<typename number> class BlockVector;
template<typename number> class FullMatrix;


/**
 * A variant of FullMatrix using LAPACK functions wherever
 * possible. In order to do this, the matrix is stored in transposed
 * order. The element access functions hide this fact by reverting the
 * transposition.
 *
 * @note In order to perform LAPACK functions, the class contains a lot of
 * auxiliary data in the private section. The names of these data
 * vectors are usually the names chosen for the arguments in the
 * LAPACK documentation.
 *
 * @ingroup Matrix1
 * @author Guido Kanschat, 2005
 */
template <typename number>
class LAPACKFullMatrix : public TransposeTable<number>
{
public:
  /**
   * Declare type for container size.
   */
  typedef types::global_dof_index size_type;

  /**
   * Constructor. Initialize the
   * matrix as a square matrix with
   * dimension <tt>n</tt>.
   *
   * In order to avoid the implicit
   * conversion of integers and
   * other types to a matrix, this
   * constructor is declared
   * <tt>explicit</tt>.
   *
   * By default, no memory is
   * allocated.
   */
  explicit LAPACKFullMatrix (const size_type n = 0);

  /**
   * Constructor. Initialize the
   * matrix as a rectangular
   * matrix.
   */
  LAPACKFullMatrix (const size_type rows,
                    const size_type cols);

  /**
   * Copy constructor. This
   * constructor does a deep copy
   * of the matrix. Therefore, it
   * poses a possible efficiency
   * problem, if for example,
   * function arguments are passed
   * by value rather than by
   * reference. Unfortunately, we
   * can't mark this copy
   * constructor <tt>explicit</tt>,
   * since that prevents the use of
   * this class in containers, such
   * as <tt>std::vector</tt>. The
   * responsibility to check
   * performance of programs must
   * therefore remain with the
   * user of this class.
   */
  LAPACKFullMatrix (const LAPACKFullMatrix &);

  /**
   * Assignment operator.
   */
  LAPACKFullMatrix<number> &
  operator = (const LAPACKFullMatrix<number> &);

  /**
   * Assignment operator for a
   * regular FullMatrix. Note that
   * since LAPACK expects matrices
   * in transposed order, this
   * transposition is included here.
   */
  template <typename number2>
  LAPACKFullMatrix<number> &
  operator = (const FullMatrix<number2> &);

  /**
   * This operator assigns a scalar
   * to a matrix. To avoid
   * confusion with constructors,
   * zero is the only value allowed
   * for <tt>d</tt>
   */
  LAPACKFullMatrix<number> &
  operator = (const double d);

  /**
   * Assignment from different
   * matrix classes, performing the
   * usual conversion to the
   * transposed format expected by LAPACK. This
   * assignment operator uses
   * iterators of the class
   * MATRIX. Therefore, sparse
   * matrices are possible sources.
   */
  template <class MATRIX>
  void copy_from (const MATRIX &);

  /**
   * Fill rectangular block.
   *
   * A rectangular block of the
   * matrix <tt>src</tt> is copied into
   * <tt>this</tt>. The upper left
   * corner of the block being
   * copied is
   * <tt>(src_offset_i,src_offset_j)</tt>.
   * The upper left corner of the
   * copied block is
   * <tt>(dst_offset_i,dst_offset_j)</tt>.
   * The size of the rectangular
   * block being copied is the
   * maximum size possible,
   * determined either by the size
   * of <tt>this</tt> or <tt>src</tt>.
   *
   * The final two arguments allow
   * to enter a multiple of the
   * source or its transpose.
   */
  template<class MATRIX>
  void fill (const MATRIX &src,
             const size_type dst_offset_i = 0,
             const size_type dst_offset_j = 0,
             const size_type src_offset_i = 0,
             const size_type src_offset_j = 0,
             const number factor = 1.,
             const bool transpose = false);


  /**
   * Matrix-vector-multiplication.
   *
  * Depending on previous
  * transformations recorded in #state, the
  * result of this function is one
  * of
  *
  * <ul>
  * <li> If #state is LAPACKSupport::matrix or
  * LAPACKSupport::inverse_matrix,
  * this will be a regular matrix
  * vector product using LAPACK
  * gemv().
  * <li> If #state is
  * LAPACKSupport::svd or
  * LAPACKSupport::inverse_svd,
  * this function first multiplies
  * with the right transformation
  * matrix, then with the diagonal
  * matrix of singular values or
  * their reciprocal values, and
  * finally with the left
  * trandformation matrix.
  * </ul>
  *
   * The optional parameter
   * <tt>adding</tt> determines, whether the
   * result is stored in <tt>w</tt> or added
   * to <tt>w</tt>.
   *
   * if (adding)
   *  <i>w += A*v</i>
   *
   * if (!adding)
   *  <i>w = A*v</i>
   *
   * @note Source and destination must
   * not be the same vector.
   *
   * @note This template only
   * exists for compile-time
   * compatibility with
   * FullMatrix. Implementation is
   * only available for <tt>VECTOR=Vector&lt;number&gt;</tt>
   */
  template <class VECTOR>
  void vmult(VECTOR &dst, const VECTOR &src, const bool adding = false) const;
  /**
   * Adding Matrix-vector-multiplication.
   *  <i>w += A*v</i>
   *
  * See the documentation of
  * vmult() for details on the
  * implementation.
   */
  template <class VECTOR>
  void vmult_add (VECTOR &w, const VECTOR &v) const;

  /**
   * Transpose
   * matrix-vector-multiplication.
   *
   * The optional parameter
   * <tt>adding</tt> determines, whether the
   * result is stored in <tt>w</tt> or added
   * to <tt>w</tt>.
   *
   * if (adding)
   *  <i>w += A<sup>T</sup>*v</i>
   *
   * if (!adding)
   *  <i>w = A<sup>T</sup>*v</i>
   *
  * See the documentation of
  * vmult() for details on the
  * implementation.
   */
  template <class VECTOR>
  void Tvmult (VECTOR &w, const VECTOR &v,
               const bool            adding=false) const;

  /**
   * Adding transpose
   * matrix-vector-multiplication.
   *  <i>w += A<sup>T</sup>*v</i>
   *
  * See the documentation of
  * vmult() for details on the
  * implementation.
   */
  template <class VECTOR>
  void Tvmult_add (VECTOR &w, const VECTOR &v) const;

  void vmult (Vector<number>   &w,
              const Vector<number> &v,
              const bool            adding=false) const;
  void vmult_add (Vector<number>       &w,
                  const Vector<number> &v) const;
  void Tvmult (Vector<number>       &w,
               const Vector<number> &v,
               const bool            adding=false) const;
  void Tvmult_add (Vector<number>       &w,
                   const Vector<number> &v) const;
  /**
   * Compute the LU factorization
   * of the matrix using LAPACK
   * function Xgetrf.
   */
  void compute_lu_factorization ();

  /**
   * Invert the matrix by first computing
   * an LU factorization with the LAPACK
   * function Xgetrf and then building
   * the actual inverse using Xgetri.
   */
  void invert ();

  /**
   * Solve the linear system with
   * right hand side given by
   * applying forward/backward
   * substitution to the previously
   * computed LU
   * factorization. Uses LAPACK
   * function Xgetrs.
   */
  void apply_lu_factorization (Vector<number> &v,
                               const bool transposed) const;

  /**
   * Compute eigenvalues of the
   * matrix. After this routine has
   * been called, eigenvalues can
   * be retrieved using the
   * eigenvalue() function. The
   * matrix itself will be
   * LAPACKSupport::unusable after
   * this operation.
   *
   * The optional arguments allow
   * to compute left and right
   * eigenvectors as well.
   *
   * Note that the function does
   * not return the computed
   * eigenvalues right away since
   * that involves copying data
   * around between the output
   * arrays of the LAPACK functions
   * and any return array. This is
   * often unnecessary since one
   * may not be interested in all
   * eigenvalues at once, but for
   * example only the extreme
   * ones. In that case, it is
   * cheaper to just have this
   * function compute the
   * eigenvalues and have a
   * separate function that returns
   * whatever eigenvalue is
   * requested.
   *
   * @note Calls the LAPACK
   * function Xgeev.
   */
  void compute_eigenvalues (const bool right_eigenvectors = false,
                            const bool left_eigenvectors = false);

  /**
   * Compute eigenvalues and
   * eigenvectors of a real symmetric
   * matrix. Only eigenvalues in the
   * interval (lower_bound, upper_bound]
   * are computed with the absolute
   * tolerance abs_accuracy. An approximate
   * eigenvalue is accepted as converged
   * when it is determined to lie in an
   * interval [a,b] of width less than or
   * equal to abs_accuracy + eps * max( |a|,|b| ),
   * where eps is the machine precision.
   * If abs_accuracy is less than
   * or equal to zero, then  eps*|t| will
   * be used in its place, where |t| is the
   * 1-norm of the tridiagonal matrix obtained
   * by reducing A to tridiagonal form.
   * Eigenvalues will be computed most accurately
   * when abs_accuracy is set to twice the
   * underflow threshold, not zero.
   * After this routine has
   * been called, all eigenvalues in
   * (lower_bound, upper_bound] will be
   * stored in eigenvalues and the
   * corresponding eigenvectors will be stored
   * in the columns of eigenvectors, whose
   * dimension is set accordingly.
   *
   * @note Calls the LAPACK function
   * Xsyevx. For this to work, ./configure
   * has to be told to use LAPACK.
   */
  void compute_eigenvalues_symmetric(
    const number lower_bound,
    const number upper_bound,
    const number abs_accuracy,
    Vector<number> &eigenvalues,
    FullMatrix<number> &eigenvectors);

  /**
   * Compute generalized eigenvalues
   * and eigenvectors of
   * a real generalized symmetric
   * eigenproblem of the form
   * itype = 1: $Ax=\lambda B x$
   * itype = 2: $ABx=\lambda x$
   * itype = 3: $BAx=\lambda x$,
   * where A is this matrix.
   * A and B are assumed to be symmetric,
   * and B has to be positive definite.
   * Only eigenvalues in the interval
   * (lower_bound, upper_bound] are
   * computed with the absolute tolerance
   * abs_accuracy.
   * An approximate eigenvalue is accepted
   * as converged when it is determined to
   * lie in an interval [a,b] of width less
   * than or equal to abs_accuracy + eps * max( |a|,|b| ),
   * where eps is the machine precision.
   * If abs_accuracy is less than
   * or equal to zero, then  eps*|t| will
   * be used in its place, where |t| is the
   * 1-norm of the tridiagonal matrix obtained
   * by reducing A to tridiagonal form.
   * Eigenvalues will be computed most accurately
   * when abs_accuracy is set to twice the
   * underflow threshold, not zero.
   * After this routine has
   * been called, all eigenvalues in
   * (lower_bound, upper_bound] will be
   * stored in eigenvalues and the
   * corresponding eigenvectors will be stored
   * in eigenvectors, whose dimension is set
   * accordingly.
   *
   * @note Calls the LAPACK
   * function Xsygvx. For this to
   * work, ./configure has to
   * be told to use LAPACK.
   */
  void compute_generalized_eigenvalues_symmetric(
    LAPACKFullMatrix<number> &B,
    const number lower_bound,
    const number upper_bound,
    const number abs_accuracy,
    Vector<number> &eigenvalues,
    std::vector<Vector<number> > &eigenvectors,
    const int itype = 1);

  /**
   * Same as the other
   * compute_generalized_eigenvalues_symmetric
   * function except that all
   * eigenvalues are computed
   * and the tolerance is set
   * automatically.
   * Note that this function does
   * not return the computed
   * eigenvalues right away since
   * that involves copying data
   * around between the output
   * arrays of the LAPACK functions
   * and any return array. This is
   * often unnecessary since one
   * may not be interested in all
   * eigenvalues at once, but for
   * example only the extreme
   * ones. In that case, it is
   * cheaper to just have this
   * function compute the
   * eigenvalues and have a
   * separate function that returns
   * whatever eigenvalue is
   * requested. Eigenvalues can
   * be retrieved using the
   * eigenvalue() function.
   * The number of computed
   * eigenvectors is equal
   * to eigenvectors.size()
   *
   * @note Calls the LAPACK
   * function Xsygv. For this to
   * work, ./configure has to
   * be told to use LAPACK.
   */
  void compute_generalized_eigenvalues_symmetric (
    LAPACKFullMatrix<number> &B,
    std::vector<Vector<number> > &eigenvectors,
    const int itype = 1);

  /**
   * Compute the singular value
   * decomposition of the
   * matrix using LAPACK function
   * Xgesdd.
   *
   * Requires that the #state is
   * LAPACKSupport::matrix, fills
   * the data members #wr, #svd_u,
   * and #svd_vt, and leaves the
   * object in the #state
   * LAPACKSupport::svd.
   */
  void compute_svd();
  /**
   * Compute the inverse of the
   * matrix by singular value
   * decomposition.
   *
   * Requires that #state is either
   * LAPACKSupport::matrix or
   * LAPACKSupport::svd. In the
   * first case, this function
   * calls compute_svd(). After
   * this function, the object will
   * have the #state
   * LAPACKSupport::inverse_svd.
   *
   * For a singular value
   * decomposition, the inverse is
   * simply computed by replacing
   * all singular values by their
   * reciprocal values. If the
   * matrix does not have maximal
   * rank, singular values 0 are
   * not touched, thus computing
   * the minimal norm right inverse
   * of the matrix.
   *
   * The parameter
   * <tt>threshold</tt> determines,
   * when a singular value should
   * be considered zero. It is the
   * ratio of the smallest to the
   * largest nonzero singular
   * value
   * <i>s</i><sub>max</sub>. Thus,
   * the inverses of all singular
   * values less than
   * <i>s</i><sub>max</sub>/<tt>threshold</tt>
   * will be set to zero.
   */
  void compute_inverse_svd (const double threshold = 0.);

  /**
   * Retrieve eigenvalue after
   * compute_eigenvalues() was
   * called.
   */
  std::complex<number>
  eigenvalue (const size_type i) const;

  /**
   * Retrieve singular values after
   * compute_svd() or
   * compute_inverse_svd() was
   * called.
   */
  number
  singular_value (const size_type i) const;

  /**
   * Print the matrix and allow
   * formatting of entries.
   *
   * The parameters allow for a
   * flexible setting of the output
   * format:
   *
   * @arg <tt>precision</tt>
   * denotes the number of trailing
   * digits.
   *
   * @arg <tt>scientific</tt> is
   * used to determine the number
   * format, where
   * <tt>scientific</tt> =
   * <tt>false</tt> means fixed
   * point notation.
   *
   * @arg <tt>width</tt> denotes
   * the with of each column. A
   * zero entry for <tt>width</tt>
   * makes the function compute a
   * width, but it may be changed
   * to a positive value, if output
   * is crude.
   *
   * @arg <tt>zero_string</tt>
   * specifies a string printed for
   * zero entries.
   *
   * @arg <tt>denominator</tt>
   * Multiply the whole matrix by
   * this common denominator to get
   * nicer numbers.
   *
   * @arg <tt>threshold</tt>: all
   * entries with absolute value
   * smaller than this are
   * considered zero.
  */
  void print_formatted (std::ostream       &out,
                        const unsigned int  presicion=3,
                        const bool          scientific  = true,
                        const unsigned int  width       = 0,
                        const char         *zero_string = " ",
                        const double        denominator = 1.,
                        const double        threshold   = 0.) const;

private:
  /**
   * Since LAPACK operations
   * notoriously change the meaning
   * of the matrix entries, we
   * record the current state after
   * the last operation here.
   */
  LAPACKSupport::State state;
  /**
   * Additional properties of the
   * matrix which may help to
   * select more efficient LAPACK
   * functions.
   */
  LAPACKSupport::Properties properties;

  /**
   * The working array used for
   * some LAPACK functions.
   */
  mutable std::vector<number> work;

  /**
   * The vector storing the
   * permutations applied for
   * pivoting in the
   * LU-factorization.
   *
   * Also used as the scratch array
   * IWORK for LAPACK functions
   * needing it.
   */
  std::vector<int> ipiv;

  /**
   * Workspace for calculating the
   * inverse matrix from an LU
   * factorization.
   */
  std::vector<number> inv_work;

  /**
   * Real parts of eigenvalues or
   * the singular values. Filled by
   * compute_eigenvalues() or compute_svd().
   */
  std::vector<number> wr;

  /**
   * Imaginary parts of
   * eigenvalues. Filled by
   * compute_eigenvalues.
   */
  std::vector<number> wi;

  /**
   * Space where left eigenvectors
   * can be stored.
   */
  std::vector<number> vl;

  /**
   * Space where right eigenvectors
   * can be stored.
   */
  std::vector<number> vr;

  /**
   * The matrix <i>U</i> in the
   * singular value decomposition
   * <i>USV<sup>T</sup></i>.
   */
  std_cxx1x::shared_ptr<LAPACKFullMatrix<number> > svd_u;
  /**
   * The matrix
   * <i>V<sup>T</sup></i> in the
   * singular value decomposition
   * <i>USV<sup>T</sup></i>.
   */
  std_cxx1x::shared_ptr<LAPACKFullMatrix<number> > svd_vt;
};



/**
 * A preconditioner based on the LU-factorization of LAPACKFullMatrix.
 *
 * @ingroup Preconditioners
 * @author Guido Kanschat, 2006
 */
template <typename number>
class PreconditionLU
  :
  public Subscriptor
{
public:
  void initialize(const LAPACKFullMatrix<number> &);
  void initialize(const LAPACKFullMatrix<number> &,
                  VectorMemory<Vector<number> > &);
  void vmult(Vector<number> &, const Vector<number> &) const;
  void Tvmult(Vector<number> &, const Vector<number> &) const;
  void vmult(BlockVector<number> &,
             const BlockVector<number> &) const;
  void Tvmult(BlockVector<number> &,
              const BlockVector<number> &) const;
private:
  SmartPointer<const LAPACKFullMatrix<number>,PreconditionLU<number> > matrix;
  SmartPointer<VectorMemory<Vector<number> >,PreconditionLU<number> > mem;
};



template <typename number>
template <class MATRIX>
inline void
LAPACKFullMatrix<number>::copy_from (const MATRIX &M)
{
  this->reinit (M.m(), M.n());

  // loop over the elements of the argument matrix row by row, as suggested
  // in the documentation of the sparse matrix iterator class, and
  // copy them into the current object
  for (size_type row = 0; row < M.m(); ++row)
    {
      const typename MATRIX::const_iterator end_row = M.end(row);
      for (typename MATRIX::const_iterator entry = M.begin(row);
           entry != end_row; ++entry)
        this->el(row, entry->column()) = entry->value();
    }

  state = LAPACKSupport::matrix;
}



template <typename number>
template <class MATRIX>
inline void
LAPACKFullMatrix<number>::fill (
  const MATRIX &M,
  const size_type dst_offset_i,
  const size_type dst_offset_j,
  const size_type src_offset_i,
  const size_type src_offset_j,
  const number factor,
  const bool transpose)
{
  // loop over the elements of the argument matrix row by row, as suggested
  // in the documentation of the sparse matrix iterator class
  for (size_type row = src_offset_i; row < M.m(); ++row)
    {
      const typename MATRIX::const_iterator end_row = M.end(row);
      for (typename MATRIX::const_iterator entry = M.begin(row);
           entry != end_row; ++entry)
        {
          const size_type i = transpose ? entry->column() : row;
          const size_type j = transpose ? row : entry->column();

          const size_type dst_i=dst_offset_i+i-src_offset_i;
          const size_type dst_j=dst_offset_j+j-src_offset_j;
          if (dst_i<this->n_rows() && dst_j<this->n_cols())
            (*this)(dst_i, dst_j) = factor * entry->value();
        }
    }

  state = LAPACKSupport::matrix;
}


template <typename number>
template <class VECTOR>
inline void
LAPACKFullMatrix<number>::vmult(VECTOR &, const VECTOR &, bool) const
{
  Assert(false, ExcNotImplemented());
}


template <typename number>
template <class VECTOR>
inline void
LAPACKFullMatrix<number>::vmult_add(VECTOR &, const VECTOR &) const
{
  Assert(false, ExcNotImplemented());
}


template <typename number>
template <class VECTOR>
inline void
LAPACKFullMatrix<number>::Tvmult(VECTOR &, const VECTOR &, bool) const
{
  Assert(false, ExcNotImplemented());
}


template <typename number>
template <class VECTOR>
inline void
LAPACKFullMatrix<number>::Tvmult_add(VECTOR &, const VECTOR &) const
{
  Assert(false, ExcNotImplemented());
}


template <typename number>
inline std::complex<number>
LAPACKFullMatrix<number>::eigenvalue (const size_type i) const
{
  Assert (state & LAPACKSupport::eigenvalues, ExcInvalidState());
  Assert (wr.size() == this->n_rows(), ExcInternalError());
  Assert (wi.size() == this->n_rows(), ExcInternalError());
  Assert (i<this->n_rows(), ExcIndexRange(i,0,this->n_rows()));

  return std::complex<number>(wr[i], wi[i]);
}


template <typename number>
inline number
LAPACKFullMatrix<number>::singular_value (const size_type i) const
{
  Assert (state == LAPACKSupport::svd || state == LAPACKSupport::inverse_svd, LAPACKSupport::ExcState(state));
  AssertIndexRange(i,wr.size());

  return wr[i];
}



DEAL_II_NAMESPACE_CLOSE

#endif