/usr/include/deal.II/lac/sparse_matrix.h is in libdeal.ii-dev 8.1.0-6ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 | // ---------------------------------------------------------------------
// $Id: sparse_matrix.h 31932 2013-12-08 02:15:54Z heister $
//
// Copyright (C) 1999 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------
#ifndef __deal2__sparse_matrix_h
#define __deal2__sparse_matrix_h
#include <deal.II/base/config.h>
#include <deal.II/base/subscriptor.h>
#include <deal.II/base/smartpointer.h>
#include <deal.II/lac/sparsity_pattern.h>
#include <deal.II/lac/identity_matrix.h>
#include <deal.II/lac/exceptions.h>
// Included for VectorOperation
#include <deal.II/lac/vector.h>
DEAL_II_NAMESPACE_OPEN
template <typename number> class Vector;
template <typename number> class FullMatrix;
template <typename Matrix> class BlockMatrixBase;
template <typename number> class SparseILU;
#ifdef DEAL_II_WITH_TRILINOS
namespace TrilinosWrappers
{
class SparseMatrix;
}
#endif
/**
* @addtogroup Matrix1
* @{
*/
/**
* A namespace in which we declare iterators over the elements of sparse
* matrices.
*/
namespace SparseMatrixIterators
{
/**
* Declare type for container size.
*/
typedef types::global_dof_index size_type;
// forward declaration
template <typename number, bool Constness>
class Iterator;
/**
* General template for sparse matrix accessors. The first template argument
* denotes the underlying numeric type, the second the constness of the
* matrix.
*
* The general template is not implemented, only the specializations for the
* two possible values of the second template argument. Therefore, the
* interface listed here only serves as a template provided since doxygen
* does not link the specializations.
*/
template <typename number, bool Constness>
class Accessor : public SparsityPatternIterators::Accessor
{
public:
/**
* Value of this matrix entry.
*/
number value() const;
/**
* Value of this matrix entry.
*/
number &value();
/**
* Return a reference to the matrix into which this accessor points. Note
* that in the present case, this is a constant reference.
*/
const SparseMatrix<number> &get_matrix () const;
};
/**
* Accessor class for constant matrices, used in the const_iterators. This
* class builds on the accessor classes used for sparsity patterns to loop
* over all nonzero entries, and only adds the accessor functions to gain
* access to the actual value stored at a certain location.
*/
template <typename number>
class Accessor<number,true> : public SparsityPatternIterators::Accessor
{
public:
/**
* Typedef for the type (including constness) of the matrix to be used
* here.
*/
typedef const SparseMatrix<number> MatrixType;
/**
* Constructor.
*
* @deprecated This constructor is deprecated. Use the other constructor
* with a global index instead.
*/
Accessor (MatrixType *matrix,
const size_type row,
const size_type index) DEAL_II_DEPRECATED;
/**
* Constructor.
*/
Accessor (MatrixType *matrix,
const std::size_t index_within_matrix);
/**
* Constructor. Construct the end accessor for the given matrix.
*/
Accessor (MatrixType *matrix);
/**
* Copy constructor to get from a non-const accessor to a const accessor.
*/
Accessor (const SparseMatrixIterators::Accessor<number,false> &a);
/**
* Value of this matrix entry.
*/
number value() const;
/**
* Return a reference to the matrix into which this accessor points. Note
* that in the present case, this is a constant reference.
*/
MatrixType &get_matrix () const;
private:
/**
* Pointer to the matrix we use.
*/
MatrixType *matrix;
/**
* Make the advance function of the base class available.
*/
using SparsityPatternIterators::Accessor::advance;
/**
* Make iterator class a friend.
*/
template <typename, bool>
friend class Iterator;
};
/**
* Accessor class for non-constant matrices, used in the iterators. This
* class builds on the accessor classes used for sparsity patterns to loop
* over all nonzero entries, and only adds the accessor functions to gain
* access to the actual value stored at a certain location.
*/
template <typename number>
class Accessor<number,false> : public SparsityPatternIterators::Accessor
{
private:
/**
* Reference class. This is what the accessor class returns when you call
* the value() function. The reference acts just as if it were a reference
* to the actual value of a matrix entry, i.e. you can read and write it,
* you can add and multiply to it, etc, but since the matrix does not give
* away the address of this matrix entry, we have to go through functions
* to do all this.
*
* The constructor takes a pointer to an accessor object that describes
* which element of the matrix it points to. This creates an ambiguity
* when one writes code like iterator->value()=0 (instead of
* iterator->value()=0.0), since the right hand side is an integer that
* can both be converted to a <tt>number</tt> (i.e., most commonly a
* double) or to another object of type <tt>Reference</tt>. The compiler
* then complains about not knowing which conversion to take.
*
* For some reason, adding another overload operator=(int) doesn't seem to
* cure the problem. We avoid it, however, by adding a second, dummy
* argument to the Reference constructor, that is unused, but makes sure
* there is no second matching conversion sequence using a one-argument
* right hand side.
*
* The testcase oliver_01 checks that this actually works as intended.
*/
class Reference
{
public:
/**
* Constructor. For the second argument, see the general class
* documentation.
*/
Reference (const Accessor *accessor,
const bool dummy);
/**
* Conversion operator to the data type of the matrix.
*/
operator number () const;
/**
* Set the element of the matrix we presently point to to @p n.
*/
const Reference &operator = (const number n) const;
/**
* Add @p n to the element of the matrix we presently point to.
*/
const Reference &operator += (const number n) const;
/**
* Subtract @p n from the element of the matrix we presently point to.
*/
const Reference &operator -= (const number n) const;
/**
* Multiply the element of the matrix we presently point to by @p n.
*/
const Reference &operator *= (const number n) const;
/**
* Divide the element of the matrix we presently point to by @p n.
*/
const Reference &operator /= (const number n) const;
private:
/**
* Pointer to the accessor that denotes which element we presently point
* to.
*/
const Accessor *accessor;
};
public:
/**
* Typedef for the type (including constness) of the matrix to be used
* here.
*/
typedef SparseMatrix<number> MatrixType;
/**
* Constructor.
*/
Accessor (MatrixType *matrix,
const size_type row,
const size_type index);
/**
* Constructor.
*/
Accessor (MatrixType *matrix,
const std::size_t index);
/**
* Constructor. Construct the end accessor for the given matrix.
*/
Accessor (MatrixType *matrix);
/**
* Value of this matrix entry, returned as a read- and writable reference.
*/
Reference value() const;
/**
* Return a reference to the matrix into which this accessor points. Note
* that in the present case, this is a non-constant reference.
*/
MatrixType &get_matrix () const;
private:
/**
* Pointer to the matrix we use.
*/
MatrixType *matrix;
/**
* Make the advance function of the base class available.
*/
using SparsityPatternIterators::Accessor::advance;
/**
* Make iterator class a friend.
*/
template <typename, bool>
friend class Iterator;
/**
* Make the inner reference class a friend if the compiler has a bug and
* requires this.
*/
};
/**
* STL conforming iterator for constant and non-constant matrices.
*
* The typical use for these iterators is to iterate over the elements of
* a sparse matrix
* or over the elements of individual rows. Note that there is no guarantee
* that the elements of a row are actually traversed in an order in which
* columns monotonically increase. See the documentation of the
* SparsityPattern class for more information.
*
* The first template argument denotes the underlying numeric type, the
* second the constness of the matrix.
*
* Since there is a specialization of this class for
* <tt>Constness=false</tt>, this class is for iterators to constant
* matrices.
*
* @note This class operates directly on the internal data structures of the
* SparsityPattern and SparseMatrix classes. As a consequence, some operations
* are cheap and some are not. In particular, it is cheap to access the column
* index and the value of an entry pointed to. On the other hand, it is expensive
* to access the row index (this requires $O(\log(N))$ operations for a
* matrix with $N$ row). As a consequence, when you design algorithms that
* use these iterators, it is common practice to not loop over <i>all</i>
* elements of a sparse matrix at once, but to have an outer loop over
* all rows and within this loop iterate over the elements of this row.
* This way, you only ever need to dereference the iterator to obtain
* the column indices and values whereas the (expensive) lookup of the row index
* can be avoided by using the loop index instead.
*/
template <typename number, bool Constness>
class Iterator
{
public:
/**
* Typedef for the matrix type (including constness) we are to operate on.
*/
typedef
typename Accessor<number,Constness>::MatrixType
MatrixType;
/**
* A typedef for the type you get when you dereference an iterator
* of the current kind.
*/
typedef
const Accessor<number,Constness> &value_type;
/**
* Constructor. Create an iterator into the matrix @p matrix for the given
* row and the index within it.
*
* @deprecated This constructor is deprecated. Use the other constructor
* with a global index instead.
*/
Iterator (MatrixType *matrix,
const size_type row,
const size_type index) DEAL_II_DEPRECATED;
/**
* Constructor. Create an iterator into the matrix @p matrix for the given
* index in the complete matrix (counting from the zeroth entry).
*/
Iterator (MatrixType *matrix,
const std::size_t index_within_matrix);
/**
* Constructor. Create the end iterator for the given matrix.
*/
Iterator (MatrixType *matrix);
/**
* Conversion constructor to get from a non-const iterator to a const
* iterator.
*/
Iterator (const SparseMatrixIterators::Iterator<number,false> &i);
/**
* Prefix increment.
*/
Iterator &operator++ ();
/**
* Postfix increment.
*/
Iterator operator++ (int);
/**
* Dereferencing operator.
*/
const Accessor<number,Constness> &operator* () const;
/**
* Dereferencing operator.
*/
const Accessor<number,Constness> *operator-> () const;
/**
* Comparison. True, if both iterators point to the same matrix position.
*/
bool operator == (const Iterator &) const;
/**
* Inverse of <tt>==</tt>.
*/
bool operator != (const Iterator &) const;
/**
* Comparison operator. Result is true if either the first row number is
* smaller or if the row numbers are equal and the first index is smaller.
*
* This function is only valid if both iterators point into the same
* matrix.
*/
bool operator < (const Iterator &) const;
/**
* Comparison operator. Works in the same way as above operator, just the
* other way round.
*/
bool operator > (const Iterator &) const;
/**
* Return the distance between the current iterator and the argument.
* The distance is given by how many times one has to apply operator++
* to the current iterator to get the argument (for a positive return
* value), or operator-- (for a negative return value).
*/
int operator - (const Iterator &p) const;
/**
* Return an iterator that is @p n ahead of the current one.
*/
Iterator operator + (const size_type n) const;
private:
/**
* Store an object of the accessor class.
*/
Accessor<number,Constness> accessor;
};
}
/**
* @}
*/
//TODO: Add multithreading to the other vmult functions.
/**
* Sparse matrix. This class implements the function to store values
* in the locations of a sparse matrix denoted by a
* SparsityPattern. The separation of sparsity pattern and values is
* done since one can store data elements of different type in these
* locations without the SparsityPattern having to know this, and more
* importantly one can associate more than one matrix with the same
* sparsity pattern.
*
* The elements of a SparseMatrix are stored in the same order in which the
* SparsityPattern class stores its entries.
* Within each row, elements are generally stored left-to-right in increasing
* column index order; the exception to this rule is that if the matrix
* is square (n_rows() == n_columns()), then the diagonal entry is stored
* as the first element in each row to make operations like applying a
* Jacobi or SSOR preconditioner faster. As a consequence, if you traverse
* the elements of a row of a SparseMatrix with the help of iterators into
* this object (using SparseMatrix::begin and SparseMatrix::end) you
* will find that the elements are not sorted by column index within each row
* whenever the matrix is square.
*
* @note Instantiations for this template are provided for <tt>@<float@> and
* @<double@></tt>; others can be generated in application programs (see the
* section on @ref Instantiations in the manual).
*
* @ingroup Matrix1
* @author Essentially everyone who has ever worked on deal.II
* @date 1994-2013
*/
template <typename number>
class SparseMatrix : public virtual Subscriptor
{
public:
/**
* Declare type for container size.
*/
typedef types::global_dof_index size_type;
/**
* Type of matrix entries. In analogy to the STL container classes.
*/
typedef number value_type;
/**
* Declare a type that has holds real-valued numbers with the same precision
* as the template argument to this class. If the template argument of this
* class is a real data type, then real_type equals the template
* argument. If the template argument is a std::complex type then real_type
* equals the type underlying the complex numbers.
*
* This typedef is used to represent the return type of norms.
*/
typedef typename numbers::NumberTraits<number>::real_type real_type;
/**
* Typedef of an STL conforming iterator class walking over all the nonzero
* entries of this matrix. This iterator cannot change the values of the
* matrix.
*/
typedef
SparseMatrixIterators::Iterator<number,true>
const_iterator;
/**
* Typedef of an STL conforming iterator class walking over all the nonzero
* entries of this matrix. This iterator @em can change the values of the
* matrix, but of course can't change the sparsity pattern as this is fixed
* once a sparse matrix is attached to it.
*/
typedef
SparseMatrixIterators::Iterator<number,false>
iterator;
/**
* A structure that describes some of the traits of this class in terms of
* its run-time behavior. Some other classes (such as the block matrix
* classes) that take one or other of the matrix classes as its template
* parameters can tune their behavior based on the variables in this class.
*/
struct Traits
{
/**
* It is safe to elide additions of zeros to individual elements of this
* matrix.
*/
static const bool zero_addition_can_be_elided = true;
};
/**
* @name Constructors and initalization
*/
//@{
/**
* Constructor; initializes the matrix to be empty, without any structure,
* i.e. the matrix is not usable at all. This constructor is therefore only
* useful for matrices which are members of a class. All other matrices
* should be created at a point in the data flow where all necessary
* information is available.
*
* You have to initialize the matrix before usage with reinit(const
* SparsityPattern&).
*/
SparseMatrix ();
/**
* Copy constructor. This constructor is only allowed to be called if the
* matrix to be copied is empty. This is for the same reason as for the
* SparsityPattern, see there for the details.
*
* If you really want to copy a whole matrix, you can do so by using the
* copy_from() function.
*/
SparseMatrix (const SparseMatrix &);
/**
* Constructor. Takes the given matrix sparsity structure to represent the
* sparsity pattern of this matrix. You can change the sparsity pattern
* later on by calling the reinit(const SparsityPattern&) function.
*
* You have to make sure that the lifetime of the sparsity structure is at
* least as long as that of this matrix or as long as reinit(const
* SparsityPattern&) is not called with a new sparsity pattern.
*
* The constructor is marked explicit so as to disallow that someone passes
* a sparsity pattern in place of a sparse matrix to some function, where an
* empty matrix would be generated then.
*/
explicit SparseMatrix (const SparsityPattern &sparsity);
/**
* Copy constructor: initialize the matrix with the identity matrix. This
* constructor will throw an exception if the sizes of the sparsity pattern
* and the identity matrix do not coincide, or if the sparsity pattern does
* not provide for nonzero entries on the entire diagonal.
*/
SparseMatrix (const SparsityPattern &sparsity,
const IdentityMatrix &id);
/**
* Destructor. Free all memory, but do not release the memory of the
* sparsity structure.
*/
virtual ~SparseMatrix ();
/**
* Copy operator. Since copying entire sparse matrices is a very expensive
* operation, we disallow doing so except for the special case of empty
* matrices of size zero. This doesn't seem particularly useful, but is
* exactly what one needs if one wanted to have a
* <code>std::vector@<SparseMatrix@<double@> @></code>: in that case, one
* can create a vector (which needs the ability to copy objects) of empty
* matrices that are then later filled with something useful.
*/
SparseMatrix<number> &operator = (const SparseMatrix<number> &);
/**
* Copy operator: initialize the matrix with the identity matrix. This
* operator will throw an exception if the sizes of the sparsity pattern and
* the identity matrix do not coincide, or if the sparsity pattern does not
* provide for nonzero entries on the entire diagonal.
*/
SparseMatrix<number> &
operator= (const IdentityMatrix &id);
/**
* This operator assigns a scalar to a matrix. Since this does usually not
* make much sense (should we set all matrix entries to this value? Only
* the nonzero entries of the sparsity pattern?), this operation is only
* allowed if the actual value to be assigned is zero. This operator only
* exists to allow for the obvious notation <tt>matrix=0</tt>, which sets
* all elements of the matrix to zero, but keep the sparsity pattern
* previously used.
*/
SparseMatrix &operator = (const double d);
/**
* Reinitialize the sparse matrix with the given sparsity pattern. The
* latter tells the matrix how many nonzero elements there need to be
* reserved.
*
* Regarding memory allocation, the same applies as said above.
*
* You have to make sure that the lifetime of the sparsity structure is at
* least as long as that of this matrix or as long as reinit(const
* SparsityPattern &) is not called with a new sparsity structure.
*
* The elements of the matrix are set to zero by this function.
*/
virtual void reinit (const SparsityPattern &sparsity);
/**
* Release all memory and return to a state just like after having called
* the default constructor. It also forgets the sparsity pattern it was
* previously tied to.
*/
virtual void clear ();
//@}
/**
* @name Information on the matrix
*/
//@{
/**
* Return whether the object is empty. It is empty if either both dimensions
* are zero or no SparsityPattern is associated.
*/
bool empty () const;
/**
* Return the dimension of the image space. To remember: the matrix is of
* dimension $m \times n$.
*/
size_type m () const;
/**
* Return the dimension of the range space. To remember: the matrix is of
* dimension $m \times n$.
*/
size_type n () const;
/**
* Return the number of entries in a specific row.
*/
size_type get_row_length (const size_type row) const;
/**
* Return the number of nonzero elements of this matrix. Actually, it
* returns the number of entries in the sparsity pattern; if any of the
* entries should happen to be zero, it is counted anyway.
*/
size_type n_nonzero_elements () const;
/**
* Return the number of actually nonzero elements of this matrix. It is
* possible to specify the parameter <tt>threshold</tt> in order to count
* only the elements that have absolute value greater than the threshold.
*
* Note, that this function does (in contrary to n_nonzero_elements()) not
* count all entries of the sparsity pattern but only the ones that are
* nonzero (or whose absolute value is greater than threshold).
*/
size_type n_actually_nonzero_elements (const double threshold = 0.) const;
/**
* Return a (constant) reference to the underlying sparsity pattern of this
* matrix.
*
* Though the return value is declared <tt>const</tt>, you should be aware
* that it may change if you call any nonconstant function of objects which
* operate on it.
*/
const SparsityPattern &get_sparsity_pattern () const;
/**
* Determine an estimate for the memory consumption (in bytes) of this
* object. See MemoryConsumption.
*/
std::size_t memory_consumption () const;
/**
* Dummy function for compatibility with distributed, parallel matrices.
*/
void compress (::dealii::VectorOperation::values);
//@}
/**
* @name Modifying entries
*/
//@{
/**
* Set the element (<i>i,j</i>) to <tt>value</tt>. Throws an error if the
* entry does not exist or if <tt>value</tt> is not a finite number. Still,
* it is allowed to store zero values in non-existent fields.
*/
void set (const size_type i,
const size_type j,
const number value);
/**
* Set all elements given in a FullMatrix into the sparse matrix locations
* given by <tt>indices</tt>. In other words, this function writes the
* elements in <tt>full_matrix</tt> into the calling matrix, using the
* local-to-global indexing specified by <tt>indices</tt> for both the rows
* and the columns of the matrix. This function assumes a quadratic sparse
* matrix and a quadratic full_matrix, the usual situation in FE
* calculations.
*
* The optional parameter <tt>elide_zero_values</tt> can be used to specify
* whether zero values should be set anyway or they should be filtered away
* (and not change the previous content in the respective element if it
* exists). The default value is <tt>false</tt>, i.e., even zero values are
* treated.
*/
template <typename number2>
void set (const std::vector<size_type> &indices,
const FullMatrix<number2> &full_matrix,
const bool elide_zero_values = false);
/**
* Same function as before, but now including the possibility to use
* rectangular full_matrices and different local-to-global indexing on rows
* and columns, respectively.
*/
template <typename number2>
void set (const std::vector<size_type> &row_indices,
const std::vector<size_type> &col_indices,
const FullMatrix<number2> &full_matrix,
const bool elide_zero_values = false);
/**
* Set several elements in the specified row of the matrix with column
* indices as given by <tt>col_indices</tt> to the respective value.
*
* The optional parameter <tt>elide_zero_values</tt> can be used to specify
* whether zero values should be set anyway or they should be filtered away
* (and not change the previous content in the respective element if it
* exists). The default value is <tt>false</tt>, i.e., even zero values are
* treated.
*/
template <typename number2>
void set (const size_type row,
const std::vector<size_type> &col_indices,
const std::vector<number2> &values,
const bool elide_zero_values = false);
/**
* Set several elements to values given by <tt>values</tt> in a given row in
* columns given by col_indices into the sparse matrix.
*
* The optional parameter <tt>elide_zero_values</tt> can be used to specify
* whether zero values should be inserted anyway or they should be filtered
* away. The default value is <tt>false</tt>, i.e., even zero values are
* inserted/replaced.
*/
template <typename number2>
void set (const size_type row,
const size_type n_cols,
const size_type *col_indices,
const number2 *values,
const bool elide_zero_values = false);
/**
* Add <tt>value</tt> to the element (<i>i,j</i>). Throws an error if the
* entry does not exist or if <tt>value</tt> is not a finite number. Still,
* it is allowed to store zero values in non-existent fields.
*/
void add (const size_type i,
const size_type j,
const number value);
/**
* Add all elements given in a FullMatrix<double> into sparse matrix
* locations given by <tt>indices</tt>. In other words, this function adds
* the elements in <tt>full_matrix</tt> to the respective entries in calling
* matrix, using the local-to-global indexing specified by <tt>indices</tt>
* for both the rows and the columns of the matrix. This function assumes a
* quadratic sparse matrix and a quadratic full_matrix, the usual situation
* in FE calculations.
*
* The optional parameter <tt>elide_zero_values</tt> can be used to specify
* whether zero values should be added anyway or these should be filtered
* away and only non-zero data is added. The default value is <tt>true</tt>,
* i.e., zero values won't be added into the matrix.
*/
template <typename number2>
void add (const std::vector<size_type> &indices,
const FullMatrix<number2> &full_matrix,
const bool elide_zero_values = true);
/**
* Same function as before, but now including the possibility to use
* rectangular full_matrices and different local-to-global indexing on rows
* and columns, respectively.
*/
template <typename number2>
void add (const std::vector<size_type> &row_indices,
const std::vector<size_type> &col_indices,
const FullMatrix<number2> &full_matrix,
const bool elide_zero_values = true);
/**
* Set several elements in the specified row of the matrix with column
* indices as given by <tt>col_indices</tt> to the respective value.
*
* The optional parameter <tt>elide_zero_values</tt> can be used to specify
* whether zero values should be added anyway or these should be filtered
* away and only non-zero data is added. The default value is <tt>true</tt>,
* i.e., zero values won't be added into the matrix.
*/
template <typename number2>
void add (const size_type row,
const std::vector<size_type> &col_indices,
const std::vector<number2> &values,
const bool elide_zero_values = true);
/**
* Add an array of values given by <tt>values</tt> in the given global
* matrix row at columns specified by col_indices in the sparse matrix.
*
* The optional parameter <tt>elide_zero_values</tt> can be used to specify
* whether zero values should be added anyway or these should be filtered
* away and only non-zero data is added. The default value is <tt>true</tt>,
* i.e., zero values won't be added into the matrix.
*/
template <typename number2>
void add (const size_type row,
const size_type n_cols,
const size_type *col_indices,
const number2 *values,
const bool elide_zero_values = true,
const bool col_indices_are_sorted = false);
/**
* Multiply the entire matrix by a fixed factor.
*/
SparseMatrix &operator *= (const number factor);
/**
* Divide the entire matrix by a fixed factor.
*/
SparseMatrix &operator /= (const number factor);
/**
* Symmetrize the matrix by forming the mean value between the existing
* matrix and its transpose, $A = \frac 12(A+A^T)$.
*
* This operation assumes that the underlying sparsity pattern represents a
* symmetric object. If this is not the case, then the result of this
* operation will not be a symmetric matrix, since it only explicitly
* symmetrizes by looping over the lower left triangular part for efficiency
* reasons; if there are entries in the upper right triangle, then these
* elements are missed in the symmetrization. Symmetrization of the sparsity
* pattern can be obtain by SparsityPattern::symmetrize().
*/
void symmetrize ();
/**
* Copy the given matrix to this one. The operation triggers an assertion if the
* sparsity patterns of the two involved matrices do not point to the same
* object, since in this case the copy operation is cheaper. Since this
* operation is notheless not for free, we do not make it available through
* <tt>operator =</tt>, since this may lead to unwanted usage, e.g. in copy
* arguments to functions, which should really be arguments by reference.
*
* The source matrix may be a matrix of arbitrary type, as long as its data
* type is convertible to the data type of this matrix.
*
* The function returns a reference to <tt>*this</tt>.
*/
template <typename somenumber>
SparseMatrix<number> &
copy_from (const SparseMatrix<somenumber> &source);
/**
* This function is complete analogous to the SparsityPattern::copy_from()
* function in that it allows to initialize a whole matrix in one step. See
* there for more information on argument types and their meaning. You can
* also find a small example on how to use this function there.
*
* The only difference to the cited function is that the objects which the
* inner iterator points to need to be of type <tt>std::pair<unsigned int,
* value</tt>, where <tt>value</tt> needs to be convertible to the element
* type of this class, as specified by the <tt>number</tt> template
* argument.
*
* Previous content of the matrix is overwritten. Note that the entries
* specified by the input parameters need not necessarily cover all elements
* of the matrix. Elements not covered remain untouched.
*/
template <typename ForwardIterator>
void copy_from (const ForwardIterator begin,
const ForwardIterator end);
/**
* Copy the nonzero entries of a full matrix into this object. Previous
* content is deleted. Note that the underlying sparsity pattern must be
* appropriate to hold the nonzero entries of the full matrix.
*/
template <typename somenumber>
void copy_from (const FullMatrix<somenumber> &matrix);
#ifdef DEAL_II_WITH_TRILINOS
/**
* Copy the given Trilinos matrix to this one. The operation triggers an
* assertion if the sparsity patterns of the current object does not contain
* the location of a non-zero entry of the given argument.
*
* This function assumes that the two matrices have the same sizes.
*
* The function returns a reference to <tt>*this</tt>.
*/
SparseMatrix<number> &
copy_from (const TrilinosWrappers::SparseMatrix &matrix);
#endif
/**
* Add <tt>matrix</tt> scaled by <tt>factor</tt> to this matrix, i.e. the
* matrix <tt>factor*matrix</tt> is added to <tt>this</tt>. This function
* throws an error if the sparsity patterns of the two involved matrices do
* not point to the same object, since in this case the operation is
* cheaper.
*
* The source matrix may be a sparse matrix over an arbitrary underlying
* scalar type, as long as its data type is convertible to the data type of
* this matrix.
*/
template <typename somenumber>
void add (const number factor,
const SparseMatrix<somenumber> &matrix);
//@}
/**
* @name Entry Access
*/
//@{
/**
* Return the value of the entry (<i>i,j</i>). This may be an expensive
* operation and you should always take care where to call this function.
* In order to avoid abuse, this function throws an exception if the
* required element does not exist in the matrix.
*
* In case you want a function that returns zero instead (for entries that
* are not in the sparsity pattern of the matrix), use the el() function.
*
* If you are looping over all elements, consider using one of the iterator
* classes instead, since they are tailored better to a sparse matrix
* structure.
*/
number operator () (const size_type i,
const size_type j) const;
/**
* This function is mostly like operator()() in that it returns the value of
* the matrix entry (<i>i,j</i>). The only difference is that if this entry
* does not exist in the sparsity pattern, then instead of raising an
* exception, zero is returned. While this may be convenient in some cases,
* note that it is simple to write algorithms that are slow compared to an
* optimal solution, since the sparsity of the matrix is not used.
*
* If you are looping over all elements, consider using one of the iterator
* classes instead, since they are tailored better to a sparse matrix
* structure.
*/
number el (const size_type i,
const size_type j) const;
/**
* Return the main diagonal element in the <i>i</i>th row. This function
* throws an error if the matrix is not quadratic (see
* SparsityPattern::optimize_diagonal()).
*
* This function is considerably faster than the operator()(), since for
* quadratic matrices, the diagonal entry may be the first to be stored in
* each row and access therefore does not involve searching for the right
* column number.
*/
number diag_element (const size_type i) const;
/**
* Same as above, but return a writeable reference. You're sure you know
* what you do?
*/
number &diag_element (const size_type i);
/**
* Access to values in internal mode. Returns the value of the
* <tt>index</tt>th entry in <tt>row</tt>. Here, <tt>index</tt> refers to
* the internal representation of the matrix, not the column. Be sure to
* understand what you are doing here.
*
* @deprecated Use iterator or const_iterator instead!
*/
number raw_entry (const size_type row,
const size_type index) const DEAL_II_DEPRECATED;
/**
* This is for hackers. Get access to the <i>i</i>th element of this
* matrix. The elements are stored in a consecutive way, refer to the
* SparsityPattern class for more details.
*
* You should use this interface very carefully and only if you are
* absolutely sure to know what you do. You should also note that the
* structure of these arrays may change over time. If you change the layout
* yourself, you should also rename this function to avoid programs relying
* on outdated information!
*
* @internal @deprecated Use iterator or const_iterator instead!
*/
number global_entry (const size_type i) const DEAL_II_DEPRECATED;
/**
* Same as above, but with write access. You certainly know what you do?
*
* @internal @deprecated Use iterator or const_iterator instead!
*/
number &global_entry (const size_type i) DEAL_II_DEPRECATED;
//@}
/**
* @name Multiplications
*/
//@{
/**
* Matrix-vector multiplication: let <i>dst = M*src</i> with <i>M</i> being
* this matrix.
*
* Note that while this function can operate on all vectors that offer
* iterator classes, it is only really effective for objects of type @ref
* Vector. For all classes for which iterating over elements, or random
* member access is expensive, this function is not efficient. In
* particular, if you want to multiply with BlockVector objects, you should
* consider using a BlockSparseMatrix as well.
*
* Source and destination must not be the same vector.
*/
template <class OutVector, class InVector>
void vmult (OutVector &dst,
const InVector &src) const;
/**
* Matrix-vector multiplication: let <i>dst = M<sup>T</sup>*src</i> with
* <i>M</i> being this matrix. This function does the same as vmult() but
* takes the transposed matrix.
*
* Note that while this function can operate on all vectors that offer
* iterator classes, it is only really effective for objects of type @ref
* Vector. For all classes for which iterating over elements, or random
* member access is expensive, this function is not efficient. In
* particular, if you want to multiply with BlockVector objects, you should
* consider using a BlockSparseMatrix as well.
*
* Source and destination must not be the same vector.
*/
template <class OutVector, class InVector>
void Tvmult (OutVector &dst,
const InVector &src) const;
/**
* Adding Matrix-vector multiplication. Add <i>M*src</i> on <i>dst</i> with
* <i>M</i> being this matrix.
*
* Note that while this function can operate on all vectors that offer
* iterator classes, it is only really effective for objects of type @ref
* Vector. For all classes for which iterating over elements, or random
* member access is expensive, this function is not efficient. In
* particular, if you want to multiply with BlockVector objects, you should
* consider using a BlockSparseMatrix as well.
*
* Source and destination must not be the same vector.
*/
template <class OutVector, class InVector>
void vmult_add (OutVector &dst,
const InVector &src) const;
/**
* Adding Matrix-vector multiplication. Add <i>M<sup>T</sup>*src</i> to
* <i>dst</i> with <i>M</i> being this matrix. This function does the same
* as vmult_add() but takes the transposed matrix.
*
* Note that while this function can operate on all vectors that offer
* iterator classes, it is only really effective for objects of type @ref
* Vector. For all classes for which iterating over elements, or random
* member access is expensive, this function is not efficient. In
* particular, if you want to multiply with BlockVector objects, you should
* consider using a BlockSparseMatrix as well.
*
* Source and destination must not be the same vector.
*/
template <class OutVector, class InVector>
void Tvmult_add (OutVector &dst,
const InVector &src) const;
/**
* Return the square of the norm of the vector $v$ with respect to the norm
* induced by this matrix, i.e. $\left(v,Mv\right)$. This is useful, e.g. in
* the finite element context, where the $L_2$ norm of a function equals the
* matrix norm with respect to the mass matrix of the vector representing
* the nodal values of the finite element function.
*
* Obviously, the matrix needs to be quadratic for this operation, and for
* the result to actually be a norm it also needs to be either real
* symmetric or complex hermitian.
*
* The underlying template types of both this matrix and the given vector
* should either both be real or complex-valued, but not mixed, for this
* function to make sense.
*/
template <typename somenumber>
somenumber matrix_norm_square (const Vector<somenumber> &v) const;
/**
* Compute the matrix scalar product $\left(u,Mv\right)$.
*/
template <typename somenumber>
somenumber matrix_scalar_product (const Vector<somenumber> &u,
const Vector<somenumber> &v) const;
/**
* Compute the residual of an equation <i>Mx=b</i>, where the residual is
* defined to be <i>r=b-Mx</i>. Write the residual into <tt>dst</tt>. The
* <i>l<sub>2</sub></i> norm of the residual vector is returned.
*
* Source <i>x</i> and destination <i>dst</i> must not be the same vector.
*/
template <typename somenumber>
somenumber residual (Vector<somenumber> &dst,
const Vector<somenumber> &x,
const Vector<somenumber> &b) const;
/**
* Perform the matrix-matrix multiplication <tt>C = A * B</tt>, or, if an
* optional vector argument is given, <tt>C = A * diag(V) * B</tt>, where
* <tt>diag(V)</tt> defines a diagonal matrix with the vector entries.
*
* This function assumes that the calling matrix <tt>A</tt> and <tt>B</tt>
* have compatible sizes. The size of <tt>C</tt> will be set within this
* function.
*
* The content as well as the sparsity pattern of the matrix C will be
* changed by this function, so make sure that the sparsity pattern is not
* used somewhere else in your program. This is an expensive operation, so
* think twice before you use this function.
*
* There is an optional flag <tt>rebuild_sparsity_pattern</tt> that can be
* used to bypass the creation of a new sparsity pattern and instead uses
* the sparsity pattern stored in <tt>C</tt>. In that case, make sure that
* it really fits. The default is to rebuild the sparsity pattern.
*
* @note Rebuilding the sparsity pattern requires changing it. This means
* that all other matrices that are associated with this sparsity pattern
* will then have invalid entries.
*/
template <typename numberB, typename numberC>
void mmult (SparseMatrix<numberC> &C,
const SparseMatrix<numberB> &B,
const Vector<number> &V = Vector<number>(),
const bool rebuild_sparsity_pattern = true) const;
/**
* Perform the matrix-matrix multiplication with the transpose of
* <tt>this</tt>, i.e., <tt>C = A<sup>T</sup> * B</tt>, or, if an optional
* vector argument is given, <tt>C = A<sup>T</sup> * diag(V) * B</tt>, where
* <tt>diag(V)</tt> defines a diagonal matrix with the vector entries.
*
* This function assumes that the calling matrix <tt>A</tt> and <tt>B</tt>
* have compatible sizes. The size of <tt>C</tt> will be set within this
* function.
*
* The content as well as the sparsity pattern of the matrix C will be
* changed by this function, so make sure that the sparsity pattern is not
* used somewhere else in your program. This is an expensive operation, so
* think twice before you use this function.
*
* There is an optional flag <tt>rebuild_sparsity_pattern</tt> that can be
* used to bypass the creation of a new sparsity pattern and instead uses
* the sparsity pattern stored in <tt>C</tt>. In that case, make sure that
* it really fits. The default is to rebuild the sparsity pattern.
*
* @note Rebuilding the sparsity pattern requires changing it. This means
* that all other matrices that are associated with this sparsity pattern
* will then have invalid entries.
*/
template <typename numberB, typename numberC>
void Tmmult (SparseMatrix<numberC> &C,
const SparseMatrix<numberB> &B,
const Vector<number> &V = Vector<number>(),
const bool rebuild_sparsity_pattern = true) const;
//@}
/**
* @name Matrix norms
*/
//@{
/**
* Return the $l_1$-norm of the matrix, that is $|M|_1=\max_{\mathrm{all\
* columns\ }j}\sum_{\mathrm{all\ rows\ } i} |M_{ij}|$, (max. sum of
* columns). This is the natural matrix norm that is compatible to the
* $l_1$-norm for vectors, i.e. $|Mv|_1\leq |M|_1 |v|_1$.
* (cf. Haemmerlin-Hoffmann: Numerische Mathematik)
*/
real_type l1_norm () const;
/**
* Return the $l_\infty$-norm of the matrix, that is
* $|M|_\infty=\max_{\mathrm{all\ rows\ }i}\sum_{\mathrm{all\ columns\ }j}
* |M_{ij}|$, (max. sum of rows). This is the natural matrix norm that is
* compatible to the $l_\infty$-norm of vectors, i.e. $|Mv|_\infty \leq
* |M|_\infty |v|_\infty$. (cf. Haemmerlin-Hoffmann: Numerische
* Mathematik)
*/
real_type linfty_norm () const;
/**
* Return the frobenius norm of the matrix, i.e. the square root of the sum
* of squares of all entries in the matrix.
*/
real_type frobenius_norm () const;
//@}
/**
* @name Preconditioning methods
*/
//@{
/**
* Apply the Jacobi preconditioner, which multiplies every element of the
* <tt>src</tt> vector by the inverse of the respective diagonal element and
* multiplies the result with the relaxation factor <tt>omega</tt>.
*/
template <typename somenumber>
void precondition_Jacobi (Vector<somenumber> &dst,
const Vector<somenumber> &src,
const number omega = 1.) const;
/**
* Apply SSOR preconditioning to <tt>src</tt> with damping
* <tt>omega</tt>. The optional argument <tt>pos_right_of_diagonal</tt> is
* supposed to provide an array where each entry specifies the position just
* right of the diagonal in the global array of nonzeros.
*/
template <typename somenumber>
void precondition_SSOR (Vector<somenumber> &dst,
const Vector<somenumber> &src,
const number omega = 1.,
const std::vector<std::size_t> &pos_right_of_diagonal=std::vector<std::size_t>()) const;
/**
* Apply SOR preconditioning matrix to <tt>src</tt>.
*/
template <typename somenumber>
void precondition_SOR (Vector<somenumber> &dst,
const Vector<somenumber> &src,
const number om = 1.) const;
/**
* Apply transpose SOR preconditioning matrix to <tt>src</tt>.
*/
template <typename somenumber>
void precondition_TSOR (Vector<somenumber> &dst,
const Vector<somenumber> &src,
const number om = 1.) const;
/**
* Perform SSOR preconditioning in-place. Apply the preconditioner matrix
* without copying to a second vector. <tt>omega</tt> is the relaxation
* parameter.
*/
template <typename somenumber>
void SSOR (Vector<somenumber> &v,
const number omega = 1.) const;
/**
* Perform an SOR preconditioning in-place. <tt>omega</tt> is the
* relaxation parameter.
*/
template <typename somenumber>
void SOR (Vector<somenumber> &v,
const number om = 1.) const;
/**
* Perform a transpose SOR preconditioning in-place. <tt>omega</tt> is the
* relaxation parameter.
*/
template <typename somenumber>
void TSOR (Vector<somenumber> &v,
const number om = 1.) const;
/**
* Perform a permuted SOR preconditioning in-place.
*
* The standard SOR method is applied in the order prescribed by
* <tt>permutation</tt>, that is, first the row <tt>permutation[0]</tt>,
* then <tt>permutation[1]</tt> and so on. For efficiency reasons, the
* permutation as well as its inverse are required.
*
* <tt>omega</tt> is the relaxation parameter.
*/
template <typename somenumber>
void PSOR (Vector<somenumber> &v,
const std::vector<size_type> &permutation,
const std::vector<size_type> &inverse_permutation,
const number om = 1.) const;
/**
* Perform a transposed permuted SOR preconditioning in-place.
*
* The transposed SOR method is applied in the order prescribed by
* <tt>permutation</tt>, that is, first the row <tt>permutation[m()-1]</tt>,
* then <tt>permutation[m()-2]</tt> and so on. For efficiency reasons, the
* permutation as well as its inverse are required.
*
* <tt>omega</tt> is the relaxation parameter.
*/
template <typename somenumber>
void TPSOR (Vector<somenumber> &v,
const std::vector<size_type> &permutation,
const std::vector<size_type> &inverse_permutation,
const number om = 1.) const;
/**
* Do one Jacobi step on <tt>v</tt>. Performs a direct Jacobi step with
* right hand side <tt>b</tt>. This function will need an auxiliary vector,
* which is acquired from GrowingVectorMemory.
*/
template <typename somenumber>
void Jacobi_step (Vector<somenumber> &v,
const Vector<somenumber> &b,
const number om = 1.) const;
/**
* Do one SOR step on <tt>v</tt>. Performs a direct SOR step with right
* hand side <tt>b</tt>.
*/
template <typename somenumber>
void SOR_step (Vector<somenumber> &v,
const Vector<somenumber> &b,
const number om = 1.) const;
/**
* Do one adjoint SOR step on <tt>v</tt>. Performs a direct TSOR step with
* right hand side <tt>b</tt>.
*/
template <typename somenumber>
void TSOR_step (Vector<somenumber> &v,
const Vector<somenumber> &b,
const number om = 1.) const;
/**
* Do one SSOR step on <tt>v</tt>. Performs a direct SSOR step with right
* hand side <tt>b</tt> by performing TSOR after SOR.
*/
template <typename somenumber>
void SSOR_step (Vector<somenumber> &v,
const Vector<somenumber> &b,
const number om = 1.) const;
//@}
/**
* @name Iterators
*/
//@{
/**
* STL-like iterator with the first entry of the matrix. This is the version
* for constant matrices.
*
* Note the discussion in the general documentation of this class about
* the order in which elements are accessed.
*/
const_iterator begin () const;
/**
* Final iterator. This is the version for constant matrices.
*/
const_iterator end () const;
/**
* STL-like iterator with the first entry of the matrix. This is the version
* for non-constant matrices.
*
* Note the discussion in the general documentation of this class about
* the order in which elements are accessed.
*/
iterator begin ();
/**
* Final iterator. This is the version for non-constant matrices.
*/
iterator end ();
/**
* STL-like iterator with the first entry of row <tt>r</tt>. This is the
* version for constant matrices.
*
* Note that if the given row is empty, i.e. does not contain any nonzero
* entries, then the iterator returned by this function equals
* <tt>end(r)</tt>. Note also that the iterator may not be dereferencable in
* that case.
*
* Note also the discussion in the general documentation of this class about
* the order in which elements are accessed.
*/
const_iterator begin (const size_type r) const;
/**
* Final iterator of row <tt>r</tt>. It points to the first element past the
* end of line @p r, or past the end of the entire sparsity pattern. This is
* the version for constant matrices.
*
* Note that the end iterator is not necessarily dereferencable. This is in
* particular the case if it is the end iterator for the last row of a
* matrix.
*/
const_iterator end (const size_type r) const;
/**
* STL-like iterator with the first entry of row <tt>r</tt>. This is the
* version for non-constant matrices.
*
* Note that if the given row is empty, i.e. does not contain any nonzero
* entries, then the iterator returned by this function equals
* <tt>end(r)</tt>. Note also that the iterator may not be dereferencable in
* that case.
*
* Note the discussion in the general documentation of this class about
* the order in which elements are accessed.
*/
iterator begin (const size_type r);
/**
* Final iterator of row <tt>r</tt>. It points to the first element past the
* end of line @p r, or past the end of the entire sparsity pattern. This is
* the version for non-constant matrices.
*
* Note that the end iterator is not necessarily dereferencable. This is in
* particular the case if it is the end iterator for the last row of a
* matrix.
*/
iterator end (const size_type r);
//@}
/**
* @name Input/Output
*/
//@{
/**
* Print the matrix to the given stream, using the format
* <tt>(row,column) value</tt>, i.e. one nonzero entry of the matrix
* per line. If <tt>across</tt> is true, print all entries on a
* single line, using the format row,column:value.
*
* If the argument <tt>diagonal_first</tt> is true, diagonal
* elements of quadratic matrices are printed first in their row,
* corresponding to the internal storage scheme. If it is false, the
* elements in a row are written in ascending column order.
*/
template <class STREAM>
void print (STREAM &out,
const bool across = false,
const bool diagonal_first = true) const;
/**
* Print the matrix in the usual format, i.e. as a matrix and not as a list
* of nonzero elements. For better readability, elements not in the matrix
* are displayed as empty space, while matrix elements which are explicitly
* set to zero are displayed as such.
*
* The parameters allow for a flexible setting of the output format:
* <tt>precision</tt> and <tt>scientific</tt> are used to determine the
* number format, where <tt>scientific = false</tt> means fixed point
* notation. A zero entry for <tt>width</tt> makes the function compute a
* width, but it may be changed to a positive value, if output is crude.
*
* Additionally, a character for an empty value may be specified.
*
* Finally, the whole matrix can be multiplied with a common denominator to
* produce more readable output, even integers.
*
* @attention This function may produce <b>large</b> amounts of output if
* applied to a large matrix!
*/
void print_formatted (std::ostream &out,
const unsigned int precision = 3,
const bool scientific = true,
const unsigned int width = 0,
const char *zero_string = " ",
const double denominator = 1.) const;
/**
* Print the actual pattern of the matrix. For each entry with an absolute
* value larger than threshold, a '*' is printed, a ':' for every value
* smaller and a '.' for every entry not allocated.
*/
void print_pattern(std::ostream &out,
const double threshold = 0.) const;
/**
* Write the data of this object en bloc to a file. This is done in a binary
* mode, so the output is neither readable by humans nor (probably) by other
* computers using a different operating system of number format.
*
* The purpose of this function is that you can swap out matrices and
* sparsity pattern if you are short of memory, want to communicate between
* different programs, or allow objects to be persistent across different
* runs of the program.
*/
void block_write (std::ostream &out) const;
/**
* Read data that has previously been written by block_write() from a
* file. This is done using the inverse operations to the above function, so
* it is reasonably fast because the bitstream is not interpreted except for
* a few numbers up front.
*
* The object is resized on this operation, and all previous contents are
* lost. Note, however, that no checks are performed whether new data and
* the underlying SparsityPattern object fit together. It is your
* responsibility to make sure that the sparsity pattern and the data to be
* read match.
*
* A primitive form of error checking is performed which will recognize the
* bluntest attempts to interpret some data as a matrix stored bitwise to a
* file that wasn't actually created that way, but not more.
*/
void block_read (std::istream &in);
//@}
/** @addtogroup Exceptions
* @{ */
/**
* Exception
*/
DeclException2 (ExcInvalidIndex,
int, int,
<< "The entry with index <" << arg1 << ',' << arg2
<< "> does not exist.");
/**
* Exception
*/
DeclException1 (ExcInvalidIndex1,
int,
<< "The index " << arg1 << " is not in the allowed range.");
/**
* Exception
*/
DeclException0 (ExcDifferentSparsityPatterns);
/**
* Exception
*/
DeclException2 (ExcIteratorRange,
int, int,
<< "The iterators denote a range of " << arg1
<< " elements, but the given number of rows was " << arg2);
/**
* Exception
*/
DeclException0 (ExcSourceEqualsDestination);
//@}
protected:
/**
* For some matrix storage formats, in particular for the PETSc distributed
* blockmatrices, set and add operations on individual elements can not be
* freely mixed. Rather, one has to synchronize operations when one wants to
* switch from setting elements to adding to elements. BlockMatrixBase
* automatically synchronizes the access by calling this helper function for
* each block. This function ensures that the matrix is in a state that
* allows adding elements; if it previously already was in this state, the
* function does nothing.
*/
void prepare_add();
/**
* Same as prepare_add() but prepare the matrix for setting elements if the
* representation of elements in this class requires such an operation.
*/
void prepare_set();
private:
/**
* Pointer to the sparsity pattern used for this matrix. In order to
* guarantee that it is not deleted while still in use, we subscribe to it
* using the SmartPointer class.
*/
SmartPointer<const SparsityPattern,SparseMatrix<number> > cols;
/**
* Array of values for all the nonzero entries. The position within the
* matrix, i.e. the row and column number for a given entry can only be
* deduced using the sparsity pattern. The same holds for the more common
* operation of finding an entry by its coordinates.
*/
number *val;
/**
* Allocated size of #val. This can be larger than the actually used part if
* the size of the matrix was reduced somewhen in the past by associating a
* sparsity pattern with a smaller size to this object, using the reinit()
* function.
*/
std::size_t max_len;
// make all other sparse matrices friends
template <typename somenumber> friend class SparseMatrix;
template <typename somenumber> friend class SparseLUDecomposition;
template <typename> friend class SparseILU;
/**
* To allow it calling private prepare_add() and prepare_set().
*/
template <typename> friend class BlockMatrixBase;
/**
* Also give access to internal details to the iterator/accessor
* classes.
*/
template <typename,bool> friend class SparseMatrixIterators::Iterator;
template <typename,bool> friend class SparseMatrixIterators::Accessor;
};
#ifndef DOXYGEN
/*---------------------- Inline functions -----------------------------------*/
template <typename number>
inline
typename SparseMatrix<number>::size_type SparseMatrix<number>::m () const
{
Assert (cols != 0, ExcNotInitialized());
return cols->rows;
}
template <typename number>
inline
typename SparseMatrix<number>::size_type SparseMatrix<number>::n () const
{
Assert (cols != 0, ExcNotInitialized());
return cols->cols;
}
// Inline the set() and add() functions, since they will be called frequently.
template <typename number>
inline
void
SparseMatrix<number>::set (const size_type i,
const size_type j,
const number value)
{
Assert (numbers::is_finite(value), ExcNumberNotFinite());
const size_type index = cols->operator()(i, j);
// it is allowed to set elements of the matrix that are not part of the
// sparsity pattern, if the value to which we set it is zero
if (index == SparsityPattern::invalid_entry)
{
Assert ((index != SparsityPattern::invalid_entry) ||
(value == 0.),
ExcInvalidIndex(i, j));
return;
}
val[index] = value;
}
template <typename number>
template <typename number2>
inline
void
SparseMatrix<number>::set (const std::vector<size_type> &indices,
const FullMatrix<number2> &values,
const bool elide_zero_values)
{
Assert (indices.size() == values.m(),
ExcDimensionMismatch(indices.size(), values.m()));
Assert (values.m() == values.n(), ExcNotQuadratic());
for (size_type i=0; i<indices.size(); ++i)
set (indices[i], indices.size(), &indices[0], &values(i,0),
elide_zero_values);
}
template <typename number>
template <typename number2>
inline
void
SparseMatrix<number>::set (const std::vector<size_type> &row_indices,
const std::vector<size_type> &col_indices,
const FullMatrix<number2> &values,
const bool elide_zero_values)
{
Assert (row_indices.size() == values.m(),
ExcDimensionMismatch(row_indices.size(), values.m()));
Assert (col_indices.size() == values.n(),
ExcDimensionMismatch(col_indices.size(), values.n()));
for (size_type i=0; i<row_indices.size(); ++i)
set (row_indices[i], col_indices.size(), &col_indices[0], &values(i,0),
elide_zero_values);
}
template <typename number>
template <typename number2>
inline
void
SparseMatrix<number>::set (const size_type row,
const std::vector<size_type> &col_indices,
const std::vector<number2> &values,
const bool elide_zero_values)
{
Assert (col_indices.size() == values.size(),
ExcDimensionMismatch(col_indices.size(), values.size()));
set (row, col_indices.size(), &col_indices[0], &values[0],
elide_zero_values);
}
template <typename number>
inline
void
SparseMatrix<number>::add (const size_type i,
const size_type j,
const number value)
{
Assert (numbers::is_finite(value), ExcNumberNotFinite());
if (value == 0)
return;
const size_type index = cols->operator()(i, j);
// it is allowed to add elements to the matrix that are not part of the
// sparsity pattern, if the value to which we set it is zero
if (index == SparsityPattern::invalid_entry)
{
Assert ((index != SparsityPattern::invalid_entry) ||
(value == 0.),
ExcInvalidIndex(i, j));
return;
}
val[index] += value;
}
template <typename number>
template <typename number2>
inline
void
SparseMatrix<number>::add (const std::vector<size_type> &indices,
const FullMatrix<number2> &values,
const bool elide_zero_values)
{
Assert (indices.size() == values.m(),
ExcDimensionMismatch(indices.size(), values.m()));
Assert (values.m() == values.n(), ExcNotQuadratic());
for (size_type i=0; i<indices.size(); ++i)
add (indices[i], indices.size(), &indices[0], &values(i,0),
elide_zero_values);
}
template <typename number>
template <typename number2>
inline
void
SparseMatrix<number>::add (const std::vector<size_type> &row_indices,
const std::vector<size_type> &col_indices,
const FullMatrix<number2> &values,
const bool elide_zero_values)
{
Assert (row_indices.size() == values.m(),
ExcDimensionMismatch(row_indices.size(), values.m()));
Assert (col_indices.size() == values.n(),
ExcDimensionMismatch(col_indices.size(), values.n()));
for (size_type i=0; i<row_indices.size(); ++i)
add (row_indices[i], col_indices.size(), &col_indices[0], &values(i,0),
elide_zero_values);
}
template <typename number>
template <typename number2>
inline
void
SparseMatrix<number>::add (const size_type row,
const std::vector<size_type> &col_indices,
const std::vector<number2> &values,
const bool elide_zero_values)
{
Assert (col_indices.size() == values.size(),
ExcDimensionMismatch(col_indices.size(), values.size()));
add (row, col_indices.size(), &col_indices[0], &values[0],
elide_zero_values);
}
template <typename number>
inline
SparseMatrix<number> &
SparseMatrix<number>::operator *= (const number factor)
{
Assert (cols != 0, ExcNotInitialized());
Assert (val != 0, ExcNotInitialized());
number *val_ptr = &val[0];
const number *const end_ptr = &val[cols->n_nonzero_elements()];
while (val_ptr != end_ptr)
*val_ptr++ *= factor;
return *this;
}
template <typename number>
inline
SparseMatrix<number> &
SparseMatrix<number>::operator /= (const number factor)
{
Assert (cols != 0, ExcNotInitialized());
Assert (val != 0, ExcNotInitialized());
Assert (factor !=0, ExcDivideByZero());
const number factor_inv = 1. / factor;
number *val_ptr = &val[0];
const number *const end_ptr = &val[cols->n_nonzero_elements()];
while (val_ptr != end_ptr)
*val_ptr++ *= factor_inv;
return *this;
}
template <typename number>
inline
number SparseMatrix<number>::operator () (const size_type i,
const size_type j) const
{
Assert (cols != 0, ExcNotInitialized());
Assert (cols->operator()(i,j) != SparsityPattern::invalid_entry,
ExcInvalidIndex(i,j));
return val[cols->operator()(i,j)];
}
template <typename number>
inline
number SparseMatrix<number>::el (const size_type i,
const size_type j) const
{
Assert (cols != 0, ExcNotInitialized());
const size_type index = cols->operator()(i,j);
if (index != SparsityPattern::invalid_entry)
return val[index];
else
return 0;
}
template <typename number>
inline
number SparseMatrix<number>::diag_element (const size_type i) const
{
Assert (cols != 0, ExcNotInitialized());
Assert (m() == n(), ExcNotQuadratic());
Assert (i<m(), ExcInvalidIndex1(i));
// Use that the first element in each row of a quadratic matrix is the main
// diagonal
return val[cols->rowstart[i]];
}
template <typename number>
inline
number &SparseMatrix<number>::diag_element (const size_type i)
{
Assert (cols != 0, ExcNotInitialized());
Assert (m() == n(), ExcNotQuadratic());
Assert (i<m(), ExcInvalidIndex1(i));
// Use that the first element in each row of a quadratic matrix is the main
// diagonal
return val[cols->rowstart[i]];
}
template <typename number>
inline
number
SparseMatrix<number>::raw_entry (const size_type row,
const size_type index) const
{
Assert(row<cols->rows, ExcIndexRange(row,0,cols->rows));
Assert(index<cols->row_length(row),
ExcIndexRange(index,0,cols->row_length(row)));
// this function will soon go away.
return val[cols->rowstart[row]+index];
}
template <typename number>
inline
number SparseMatrix<number>::global_entry (const size_type j) const
{
Assert (cols != 0, ExcNotInitialized());
Assert (j < cols->n_nonzero_elements(),
ExcIndexRange (j, 0, cols->n_nonzero_elements()));
return val[j];
}
template <typename number>
inline
number &SparseMatrix<number>::global_entry (const size_type j)
{
Assert (cols != 0, ExcNotInitialized());
Assert (j < cols->n_nonzero_elements(),
ExcIndexRange (j, 0, cols->n_nonzero_elements()));
return val[j];
}
template <typename number>
template <typename ForwardIterator>
void
SparseMatrix<number>::copy_from (const ForwardIterator begin,
const ForwardIterator end)
{
Assert (static_cast<size_type>(std::distance (begin, end)) == m(),
ExcIteratorRange (std::distance (begin, end), m()));
// for use in the inner loop, we define a typedef to the type of the inner
// iterators
typedef typename std::iterator_traits<ForwardIterator>::value_type::const_iterator inner_iterator;
size_type row=0;
for (ForwardIterator i=begin; i!=end; ++i, ++row)
{
const inner_iterator end_of_row = i->end();
for (inner_iterator j=i->begin(); j!=end_of_row; ++j)
// write entries
set (row, j->first, j->second);
};
}
//---------------------------------------------------------------------------
namespace SparseMatrixIterators
{
template <typename number>
inline
Accessor<number,true>::
Accessor (const MatrixType *matrix,
const size_type row,
const size_type index)
:
SparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern(),
row, index),
matrix (matrix)
{}
template <typename number>
inline
Accessor<number,true>::
Accessor (const MatrixType *matrix,
const std::size_t index_within_matrix)
:
SparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern(),
index_within_matrix),
matrix (matrix)
{}
template <typename number>
inline
Accessor<number,true>::
Accessor (const MatrixType *matrix)
:
SparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern()),
matrix (matrix)
{}
template <typename number>
inline
Accessor<number,true>::
Accessor (const SparseMatrixIterators::Accessor<number,false> &a)
:
SparsityPatternIterators::Accessor (a),
matrix (&a.get_matrix())
{}
template <typename number>
inline
number
Accessor<number, true>::value () const
{
AssertIndexRange(index_within_sparsity, matrix->n_nonzero_elements());
return matrix->val[index_within_sparsity];
}
template <typename number>
inline
typename Accessor<number, true>::MatrixType &
Accessor<number, true>::get_matrix () const
{
return *matrix;
}
template <typename number>
inline
Accessor<number, false>::Reference::Reference (
const Accessor *accessor,
const bool)
:
accessor (accessor)
{}
template <typename number>
inline
Accessor<number, false>::Reference::operator number() const
{
AssertIndexRange(accessor->index_within_sparsity, accessor->matrix->n_nonzero_elements());
return accessor->matrix->val[accessor->index_within_sparsity];
}
template <typename number>
inline
const typename Accessor<number, false>::Reference &
Accessor<number, false>::Reference::operator = (const number n) const
{
AssertIndexRange(accessor->index_within_sparsity, accessor->matrix->n_nonzero_elements());
accessor->matrix->val[accessor->index_within_sparsity] = n;
return *this;
}
template <typename number>
inline
const typename Accessor<number, false>::Reference &
Accessor<number, false>::Reference::operator += (const number n) const
{
AssertIndexRange(accessor->index_within_sparsity, accessor->matrix->n_nonzero_elements());
accessor->matrix->val[accessor->index_within_sparsity] += n;
return *this;
}
template <typename number>
inline
const typename Accessor<number, false>::Reference &
Accessor<number, false>::Reference::operator -= (const number n) const
{
AssertIndexRange(accessor->index_within_sparsity, accessor->matrix->n_nonzero_elements());
accessor->matrix->val[accessor->index_within_sparsity] -= n;
return *this;
}
template <typename number>
inline
const typename Accessor<number, false>::Reference &
Accessor<number, false>::Reference::operator *= (const number n) const
{
AssertIndexRange(accessor->index_within_sparsity, accessor->matrix->n_nonzero_elements());
accessor->matrix->val[accessor->index_within_sparsity] *= n;
return *this;
}
template <typename number>
inline
const typename Accessor<number, false>::Reference &
Accessor<number, false>::Reference::operator /= (const number n) const
{
AssertIndexRange(accessor->index_within_sparsity, accessor->matrix->n_nonzero_elements());
accessor->matrix->val[accessor->index_within_sparsity] /= n;
return *this;
}
template <typename number>
inline
Accessor<number,false>::
Accessor (MatrixType *matrix,
const size_type row,
const size_type index)
:
SparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern(),
row, index),
matrix (matrix)
{}
template <typename number>
inline
Accessor<number,false>::
Accessor (MatrixType *matrix,
const std::size_t index)
:
SparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern(),
index),
matrix (matrix)
{}
template <typename number>
inline
Accessor<number,false>::
Accessor (MatrixType *matrix)
:
SparsityPatternIterators::Accessor (&matrix->get_sparsity_pattern()),
matrix (matrix)
{}
template <typename number>
inline
typename Accessor<number, false>::Reference
Accessor<number, false>::value() const
{
return Reference(this,true);
}
template <typename number>
inline
typename Accessor<number, false>::MatrixType &
Accessor<number, false>::get_matrix () const
{
return *matrix;
}
template <typename number, bool Constness>
inline
Iterator<number, Constness>::
Iterator (MatrixType *matrix,
const size_type r,
const size_type i)
:
accessor(matrix, r, i)
{}
template <typename number, bool Constness>
inline
Iterator<number, Constness>::
Iterator (MatrixType *matrix,
const std::size_t index)
:
accessor(matrix, index)
{}
template <typename number, bool Constness>
inline
Iterator<number, Constness>::
Iterator (MatrixType *matrix)
:
accessor(matrix)
{}
template <typename number, bool Constness>
inline
Iterator<number, Constness>::
Iterator (const SparseMatrixIterators::Iterator<number,false> &i)
:
accessor(*i)
{}
template <typename number, bool Constness>
inline
Iterator<number, Constness> &
Iterator<number,Constness>::operator++ ()
{
accessor.advance ();
return *this;
}
template <typename number, bool Constness>
inline
Iterator<number,Constness>
Iterator<number,Constness>::operator++ (int)
{
const Iterator iter = *this;
accessor.advance ();
return iter;
}
template <typename number, bool Constness>
inline
const Accessor<number,Constness> &
Iterator<number,Constness>::operator* () const
{
return accessor;
}
template <typename number, bool Constness>
inline
const Accessor<number,Constness> *
Iterator<number,Constness>::operator-> () const
{
return &accessor;
}
template <typename number, bool Constness>
inline
bool
Iterator<number,Constness>::
operator == (const Iterator &other) const
{
return (accessor == other.accessor);
}
template <typename number, bool Constness>
inline
bool
Iterator<number,Constness>::
operator != (const Iterator &other) const
{
return ! (*this == other);
}
template <typename number, bool Constness>
inline
bool
Iterator<number,Constness>::
operator < (const Iterator &other) const
{
Assert (&accessor.get_matrix() == &other.accessor.get_matrix(),
ExcInternalError());
return (accessor < other.accessor);
}
template <typename number, bool Constness>
inline
bool
Iterator<number,Constness>::
operator > (const Iterator &other) const
{
return (other < *this);
}
template <typename number, bool Constness>
inline
int
Iterator<number,Constness>::
operator - (const Iterator &other) const
{
Assert (&accessor.get_matrix() == &other.accessor.get_matrix(),
ExcInternalError());
return (*this)->index_within_sparsity - other->index_within_sparsity;
}
template <typename number, bool Constness>
inline
Iterator<number,Constness>
Iterator<number,Constness>::
operator + (const size_type n) const
{
Iterator x = *this;
for (size_type i=0; i<n; ++i)
++x;
return x;
}
}
template <typename number>
inline
typename SparseMatrix<number>::const_iterator
SparseMatrix<number>::begin () const
{
return const_iterator(this, 0);
}
template <typename number>
inline
typename SparseMatrix<number>::const_iterator
SparseMatrix<number>::end () const
{
return const_iterator(this);
}
template <typename number>
inline
typename SparseMatrix<number>::iterator
SparseMatrix<number>::begin ()
{
return iterator (this, 0);
}
template <typename number>
inline
typename SparseMatrix<number>::iterator
SparseMatrix<number>::end ()
{
return iterator(this, cols->rowstart[cols->rows]);
}
template <typename number>
inline
typename SparseMatrix<number>::const_iterator
SparseMatrix<number>::begin (const size_type r) const
{
Assert (r<m(), ExcIndexRange(r,0,m()));
return const_iterator(this, cols->rowstart[r]);
}
template <typename number>
inline
typename SparseMatrix<number>::const_iterator
SparseMatrix<number>::end (const size_type r) const
{
Assert (r<m(), ExcIndexRange(r,0,m()));
return const_iterator(this, cols->rowstart[r+1]);
}
template <typename number>
inline
typename SparseMatrix<number>::iterator
SparseMatrix<number>::begin (const size_type r)
{
Assert (r<m(), ExcIndexRange(r,0,m()));
return iterator(this, cols->rowstart[r]);
}
template <typename number>
inline
typename SparseMatrix<number>::iterator
SparseMatrix<number>::end (const size_type r)
{
Assert (r<m(), ExcIndexRange(r,0,m()));
return iterator(this, cols->rowstart[r+1]);
}
template <typename number>
template <class STREAM>
inline
void SparseMatrix<number>::print (STREAM &out,
const bool across,
const bool diagonal_first) const
{
Assert (cols != 0, ExcNotInitialized());
Assert (val != 0, ExcNotInitialized());
bool hanging_diagonal = false;
number diagonal = number();
for (size_type i=0; i<cols->rows; ++i)
{
for (size_type j=cols->rowstart[i]; j<cols->rowstart[i+1]; ++j)
{
if (!diagonal_first && i == cols->colnums[j])
{
diagonal = val[j];
hanging_diagonal = true;
}
else
{
if (hanging_diagonal && cols->colnums[j]>i)
{
if (across)
out << ' ' << i << ',' << i << ':' << diagonal;
else
out << '(' << i << ',' << i << ") " << diagonal << std::endl;
hanging_diagonal = false;
}
if (across)
out << ' ' << i << ',' << cols->colnums[j] << ':' << val[j];
else
out << "(" << i << "," << cols->colnums[j] << ") " << val[j] << std::endl;
}
}
if (hanging_diagonal)
{
if (across)
out << ' ' << i << ',' << i << ':' << diagonal;
else
out << '(' << i << ',' << i << ") " << diagonal << std::endl;
hanging_diagonal = false;
}
}
if (across)
out << std::endl;
}
template <typename number>
inline
void
SparseMatrix<number>::
prepare_add()
{
//nothing to do here
}
template <typename number>
inline
void
SparseMatrix<number>::
prepare_set()
{
//nothing to do here
}
#endif // DOXYGEN
/*---------------------------- sparse_matrix.h ---------------------------*/
DEAL_II_NAMESPACE_CLOSE
#endif
/*---------------------------- sparse_matrix.h ---------------------------*/
|