This file is indexed.

/usr/include/deal.II/lac/sparse_vanka.templates.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
// ---------------------------------------------------------------------
// $Id: sparse_vanka.templates.h 30040 2013-07-18 17:06:48Z maier $
//
// Copyright (C) 1999 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__sparse_vanka_templates_h
#define __deal2__sparse_vanka_templates_h


#include <deal.II/base/memory_consumption.h>
#include <deal.II/base/thread_management.h>
#include <deal.II/lac/sparse_vanka.h>
#include <deal.II/lac/full_matrix.h>
#include <deal.II/lac/sparse_matrix.h>
#include <deal.II/lac/vector.h>

#include <algorithm>
#include <map>

DEAL_II_NAMESPACE_OPEN

template<typename number>
SparseVanka<number>::SparseVanka(const SparseMatrix<number> &M,
                                 const std::vector<bool>    &selected,
                                 const bool                  conserve_mem,
                                 const unsigned int          n_threads)
  :
  matrix (&M, typeid(*this).name()),
  conserve_mem (conserve_mem),
  selected (selected),
  n_threads (n_threads),
  inverses (M.m(), 0)
{
  Assert (M.m() == M.n(), ExcNotQuadratic ());
  Assert (M.m() == selected.size(), ExcDimensionMismatch(M.m(), selected.size()));

  if (conserve_mem == false)
    compute_inverses ();
}


template<typename number>
SparseVanka<number>::~SparseVanka()
{
  typename std::vector<SmartPointer<FullMatrix<float>,SparseVanka<number> > >::iterator i;
  for (i=inverses.begin(); i!=inverses.end(); ++i)
    {
      FullMatrix<float> *p = *i;
      *i = 0;
      if (p != 0) delete p;
    }
}


template <typename number>
void
SparseVanka<number>::compute_inverses ()
{
#ifndef DEAL_II_WITH_THREADS
  compute_inverses (0, matrix->m());
#else
  const size_type n_inverses = std::count (selected.begin(),
                                           selected.end(),
                                           true);

  const size_type n_inverses_per_thread = std::max(n_inverses / n_threads,
                                                   static_cast<size_type> (1U));

  // set up start and end index
  // for each of the
  // threads. note that we have
  // to work somewhat to get this
  // appropriate, since the
  // indices for which inverses
  // have to be computed may not
  // be evenly distributed in the
  // vector. as an extreme
  // example consider numbering
  // of DoFs by component, then
  // all indices for which we
  // have to do work will be
  // consecutive, with other
  // consecutive regions where we
  // do not have to do something
  std::vector<std::pair<size_type, unsigned int> > blocking (n_threads);

  unsigned int c       = 0;
  unsigned int thread  = 0;
  blocking[0].first = 0;

  for (size_type i=0; (i<matrix->m()) && (thread+1<n_threads); ++i)
    {
      if (selected[i] == true)
        ++c;
      if (c == n_inverses_per_thread)
        {
          blocking[thread].second  = i;
          blocking[thread+1].first = i;
          ++thread;

          c = 0;
        };
    };
  blocking[n_threads-1].second = matrix->m();

  typedef void (SparseVanka<number>::*FunPtr)(const size_type,
                                              const size_type);
  const FunPtr fun_ptr = &SparseVanka<number>::compute_inverses;

  // Now spawn the threads
  Threads::ThreadGroup<> threads;
  for (unsigned int i=0; i<n_threads; ++i)
    threads += Threads::new_thread (fun_ptr, *this,
                                    blocking[i].first,
                                    blocking[i].second);
  threads.join_all ();
#endif
}


template <typename number>
void
SparseVanka<number>::compute_inverses (const size_type begin,
                                       const size_type end)
{
  // set-up the vector that will be used
  // by the functions which we call
  // below.
  std::vector<size_type> local_indices;

  // traverse all rows of the matrix
  // which are selected
  for (size_type row=begin; row<end; ++row)
    if (selected[row] == true)
      compute_inverse (row, local_indices);
}



template <typename number>
void
SparseVanka<number>::compute_inverse (const size_type         row,
                                      std::vector<size_type> &local_indices)
{
  // first define an alias to the sparsity
  // pattern of the matrix, since this
  // will be used quite often
  const SparsityPattern &structure
    = matrix->get_sparsity_pattern();

  const size_type row_length = structure.row_length(row);

  inverses[row] = new FullMatrix<float> (row_length, row_length);

  // collect the dofs that couple
  // with @p row
  local_indices.resize (row_length);
  for (size_type i=0; i<row_length; ++i)
    local_indices[i] = structure.column_number(row, i);

  // Build local matrix
  inverses[row]->extract_submatrix_from (*matrix,
                                         local_indices,
                                         local_indices);

  // Compute inverse
  inverses[row]->gauss_jordan();
}


template<typename number>
template<typename number2>
void
SparseVanka<number>::vmult (Vector<number2>       &dst,
                            const Vector<number2> &src) const
{
  // first set output vector to zero
  dst = 0;
  // then pass on to the function
  // that actually does the work
  apply_preconditioner (dst, src);
}



template<typename number>
template<typename number2>
void
SparseVanka<number>::apply_preconditioner (Vector<number2>         &dst,
                                           const Vector<number2>   &src,
                                           const std::vector<bool> *const dof_mask) const
{
  Assert (dst.size() == src.size(),
          ExcDimensionMismatch(dst.size(), src.size()));
  Assert (dst.size() == matrix->m(),
          ExcDimensionMismatch(dst.size(), src.size()));

  // first define an alias to the sparsity
  // pattern of the matrix, since this
  // will be used quite often
  const SparsityPattern &structure
    = matrix->get_sparsity_pattern();


  // store whether we shall work on
  // the whole matrix, or only on
  // blocks. this variable is used to
  // optimize access to vectors a
  // little bit.
  const bool range_is_restricted = (dof_mask != 0);

  // space to be used for local
  // systems. allocate as much memory
  // as is the maximum. this
  // eliminates the need to
  // re-allocate memory inside the
  // loop.
  FullMatrix<float> local_matrix (structure.max_entries_per_row(),
                                  structure.max_entries_per_row());
  Vector<float> b (structure.max_entries_per_row());
  Vector<float> x (structure.max_entries_per_row());

  std::map<size_type, size_type> local_index;

  // traverse all rows of the matrix
  // which are selected
  const size_type n = matrix->m();
  for (size_type row=0; row<n; ++row)
    if ((selected[row] == true) &&
        ((range_is_restricted == false) || ((*dof_mask)[row] == true)))
      {
        const size_type row_length = structure.row_length(row);

        // if we don't store the
        // inverse matrices, then alias
        // the entry in the global
        // vector to the local matrix
        // to be used
        if (conserve_mem == true)
          {
            inverses[row] = &local_matrix;
            inverses[row]->reinit (row_length, row_length);
          };

        b.reinit (row_length);
        x.reinit (row_length);
        // mapping between:
        // 1 column number of all
        //   entries in this row, and
        // 2 the position within this
        //   row (as stored in the
        //   SparsityPattern object
        //
        // since we do not explicitly
        // consider nonsysmmetric sparsity
        // patterns, the first element
        // of each entry simply denotes
        // all degrees of freedom that
        // couple with @p row.
        local_index.clear ();
        for (size_type i=0; i<row_length; ++i)
          local_index.insert(std::pair<size_type, size_type>
                             (structure.column_number(row, i), i));

        // Build local matrix and rhs
        for (std::map<size_type, size_type>::const_iterator is=local_index.begin();
             is!=local_index.end(); ++is)
          {
            // irow loops over all DoFs that
            // couple with the present DoF
            const size_type irow = is->first;
            // index of DoF irow in the matrix
            // row corresponding to DoF @p row.
            // runs between 0 and row_length
            const size_type i = is->second;

            // copy rhs
            b(i) = src(irow);

            // for all the DoFs that irow
            // couples with
            // number of DoFs coupling to
            // irow (including irow itself)
            for (typename SparseMatrix<number>::const_iterator p=matrix->begin(row);
                 p != matrix->end(row); ++p)
              {
                // find out whether this DoF
                // (that couples with @p irow,
                // which itself couples with
                // @p row) also couples with
                // @p row.
                const std::map<size_type, size_type>::const_iterator js
                  = local_index.find(p->column());
                // if not, then still use
                // this dof to modify the rhs
                //
                // note that if so, we already
                // have copied the entry above
                if (js == local_index.end())
                  {
                    if (!range_is_restricted ||
                        ((*dof_mask)[p->column()] == true))
                      b(i) -= p->value() * dst(p->column());
                  }
                else
                  // if so, then build the
                  // matrix out of it
                  if (conserve_mem == true)
                    (*inverses[row])(i,js->second) = p->value();
              }
          }

        // Compute new values
        if (conserve_mem == true)
          inverses[row]->gauss_jordan();

        // apply preconditioner
        inverses[row]->vmult(x,b);

        // Distribute new values
        for (std::map<size_type, size_type>::const_iterator is=local_index.begin();
             is!=local_index.end(); ++is)
          {
            const size_type irow = is->first;
            const size_type i = is->second;

            if (!range_is_restricted ||
                ((*dof_mask)[irow] == true))
              dst(irow) = x(i);
            // do nothing if not in
            // the range
          }

        // if we don't store the
        // inverses, then unalias the
        // local matrix
        if (conserve_mem == true)
          inverses[row] = 0;
      }
}



template <typename number>
std::size_t
SparseVanka<number>::memory_consumption () const
{
  std::size_t mem = (sizeof(*this) +
                     MemoryConsumption::memory_consumption (selected));
  for (size_type i=0; i<inverses.size(); ++i)
    mem += MemoryConsumption::memory_consumption (*inverses[i]);

  return mem;
}




template <typename number>
SparseBlockVanka<number>::SparseBlockVanka (const SparseMatrix<number> &M,
                                            const std::vector<bool>    &selected,
                                            const unsigned int          n_blocks,
                                            const BlockingStrategy      blocking_strategy,
                                            const bool                  conserve_memory,
                                            const unsigned int          n_threads)
  :
  SparseVanka<number> (M, selected, conserve_memory, n_threads),
  n_blocks (n_blocks),
  dof_masks (n_blocks,
             std::vector<bool>(M.m(), false))
{
  compute_dof_masks (M, selected, blocking_strategy);
}


template <typename number>
void
SparseBlockVanka<number>::compute_dof_masks (const SparseMatrix<number> &M,
                                             const std::vector<bool>    &selected,
                                             const BlockingStrategy      blocking_strategy)
{
  Assert (n_blocks > 0, ExcInternalError());

  const size_type n_inverses = std::count (selected.begin(),
                                           selected.end(),
                                           true);

  const size_type n_inverses_per_block = std::max(n_inverses / n_blocks,
                                                  static_cast<size_type> (1U));

  // precompute the splitting points
  std::vector<std::pair<size_type, size_type> > intervals (n_blocks);

  // set up start and end index for
  // each of the blocks. note that
  // we have to work somewhat to get
  // this appropriate, since the
  // indices for which inverses have
  // to be computed may not be evenly
  // distributed in the vector. as an
  // extreme example consider
  // numbering of DoFs by component,
  // then all indices for which we
  // have to do work will be
  // consecutive, with other
  // consecutive regions where we do
  // not have to do something
  if (true)
    {
      unsigned int c       = 0;
      unsigned int block   = 0;
      intervals[0].first   = 0;

      for (size_type i=0; (i<M.m()) && (block+1<n_blocks); ++i)
        {
          if (selected[i] == true)
            ++c;
          if (c == n_inverses_per_block)
            {
              intervals[block].second  = i;
              intervals[block+1].first = i;
              ++block;

              c = 0;
            };
        };
      intervals[n_blocks-1].second = M.m();
    };

  // now transfer the knowledge on
  // the splitting points into the
  // vector<bool>s that the base
  // class wants to see. the way how
  // we do this depends on the
  // requested blocking strategy
  switch (blocking_strategy)
    {
    case index_intervals:
    {
      for (unsigned int block=0; block<n_blocks; ++block)
        std::fill_n (dof_masks[block].begin()+intervals[block].first,
                     intervals[block].second - intervals[block].first,
                     true);
      break;
    };

    case adaptive:
    {
      // the splitting points for
      // the DoF have been computed
      // above already, but we will
      // only use them to split the
      // Lagrange dofs into
      // blocks. splitting the
      // remaining dofs will be
      // done now.

      // first count how often the
      // Lagrange dofs of each
      // block access the different
      // dofs
      Table<2,size_type> access_count (n_blocks, M.m());

      // set-up the map that will
      // be used to store the
      // indices each Lagrange dof
      // accesses
      std::map<size_type, size_type> local_index;
      const SparsityPattern &structure = M.get_sparsity_pattern();

      for (size_type row=0; row<M.m(); ++row)
        if (selected[row] == true)
          {
            // first find out to
            // which block the
            // present row belongs
            unsigned int block_number = 0;
            while (row>=intervals[block_number].second)
              ++block_number;
            Assert (block_number < n_blocks, ExcInternalError());

            // now traverse the
            // matrix structure to
            // find out to which
            // dofs number the
            // present index wants
            // to write
            const size_type row_length = structure.row_length(row);
            for (size_type i=0; i<row_length; ++i)
              ++access_count[block_number][structure.column_number(row, i)];
          };

      // now we know that block @p i
      // wants to write to DoF @p j
      // as often as
      // <tt>access_count[i][j]</tt>
      // times. Let @p j be allotted
      // to the block which
      // accesses it most often.
      //
      // if it is a Lagrange dof,
      // the of course we leave it
      // to the block we put it
      // into in the first place
      for (size_type row=0; row<M.m(); ++row)
        if (selected[row] == true)
          {
            unsigned int block_number = 0;
            while (row>=intervals[block_number].second)
              ++block_number;

            dof_masks[block_number][row] = true;
          }
        else
          {
            // find out which block
            // accesses this dof
            // the most often
            size_type max_accesses        = 0;
            unsigned int max_access_block = 0;
            for (unsigned int block=0; block<n_blocks; ++block)
              if (access_count[block][row] > max_accesses)
                {
                  max_accesses = access_count[block][row];
                  max_access_block = block;
                };
            dof_masks[max_access_block][row] = true;
          };

      break;
    };

    default:
      Assert (false, ExcInternalError());
    };
}



template <typename number>
template <typename number2>
void SparseBlockVanka<number>::vmult (Vector<number2>       &dst,
                                      const Vector<number2> &src) const
{
  dst = 0;

  // if no blocking is required, pass
  // down to the underlying class
  if (n_blocks == 1)
    this->apply_preconditioner (dst, src);
  else
    // otherwise: blocking requested
    {
#ifdef DEAL_II_WITH_THREADS
      // spawn threads. since
      // some compilers have
      // trouble finding out
      // which 'encapsulate'
      // function to take of all
      // those possible ones if
      // we simply drop in the
      // address of an overloaded
      // template member
      // function, make it
      // simpler for the compiler
      // by giving it the correct
      // type right away:
      typedef void (SparseVanka<number>::*mem_fun_p)
      (Vector<number2> &,
       const Vector<number2> &,
       const std::vector<bool> *const) const;
      const mem_fun_p comp
        = &SparseVanka<number>::template apply_preconditioner<number2>;
      Threads::ThreadGroup<> threads;
      for (unsigned int block=0; block<n_blocks; ++block)
        threads += Threads::new_thread (comp,
                                        *static_cast<const SparseVanka<number>*>(this),
                                        dst, src,&dof_masks[block]);
      threads.join_all ();
#else
      for (unsigned int block=0; block<n_blocks; ++block)
        this->apply_preconditioner (dst, src,
                                    &dof_masks[block]);
#endif
    }
}



template <typename number>
std::size_t
SparseBlockVanka<number>::memory_consumption () const
{
  std::size_t mem = SparseVanka<number>::memory_consumption();
  for (size_type i=0; i<dof_masks.size(); ++i)
    mem += MemoryConsumption::memory_consumption (dof_masks[i]);
  return mem;
}



DEAL_II_NAMESPACE_CLOSE

#endif