This file is indexed.

/usr/include/deal.II/lac/trilinos_precondition.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
// ---------------------------------------------------------------------
// $Id: trilinos_precondition.h 31932 2013-12-08 02:15:54Z heister $
//
// Copyright (C) 2008 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------

#ifndef __deal2__trilinos_precondition_h
#define __deal2__trilinos_precondition_h


#include <deal.II/base/config.h>

#ifdef DEAL_II_WITH_TRILINOS

#  include <deal.II/base/subscriptor.h>
#  include <deal.II/base/std_cxx1x/shared_ptr.h>

#  include <deal.II/lac/trilinos_vector_base.h>
#  include <deal.II/lac/parallel_vector.h>

#  ifdef DEAL_II_WITH_MPI
#    include <Epetra_MpiComm.h>
#  else
#    include <Epetra_SerialComm.h>
#  endif
#  include <Epetra_Map.h>

#  include <Teuchos_ParameterList.hpp>
#  include <Epetra_Operator.h>
#  include <Epetra_Vector.h>

// forward declarations
class Ifpack_Preconditioner;
class Ifpack_Chebyshev;
namespace ML_Epetra
{
  class MultiLevelPreconditioner;
}


DEAL_II_NAMESPACE_OPEN

// forward declarations
template <typename number> class SparseMatrix;
template <typename number> class Vector;
class SparsityPattern;

/*! @addtogroup TrilinosWrappers
 *@{
 */

namespace TrilinosWrappers
{
  // forward declarations
  class SparseMatrix;
  class BlockSparseMatrix;
  class SolverBase;

  /**
   * The base class for all preconditioners based on Trilinos sparse
   * matrices.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Martin Kronbichler, 2008
   */
  class PreconditionBase : public Subscriptor
  {
  public:
    /**
     * Declare the type for container size.
     */
    typedef dealii::types::global_dof_index size_type;

    /**
     * Standardized data struct to
     * pipe additional flags to the
     * preconditioner.
     */
    struct AdditionalData
    {};

    /**
     * Constructor. Does not do
     * anything. The
     * <tt>initialize</tt> function
     * of the derived classes will
     * have to create the
     * preconditioner from a given
     * sparse matrix.
     */
    PreconditionBase ();

    /**
     * Copy constructor.
     */
    PreconditionBase (const PreconditionBase &);

    /**
     * Destructor.
     */
    ~PreconditionBase ();

    /**
     * Destroys the preconditioner, leaving
     * an object like just after having
     * called the constructor.
     */
    void clear ();

    /**
     * Apply the preconditioner.
     */
    virtual void vmult (VectorBase       &dst,
                        const VectorBase &src) const;

    /**
     * Apply the transpose preconditioner.
     */
    virtual void Tvmult (VectorBase       &dst,
                         const VectorBase &src) const;

    /**
     * Apply the preconditioner on
     * deal.II data structures
     * instead of the ones provided
     * in the Trilinos wrapper
     * class.
     */
    virtual void vmult (dealii::Vector<double>       &dst,
                        const dealii::Vector<double> &src) const;

    /**
     * Apply the transpose preconditioner on
     * deal.II data structures
     * instead of the ones provided
     * in the Trilinos wrapper
     * class.
     */
    virtual void Tvmult (dealii::Vector<double>       &dst,
                         const dealii::Vector<double> &src) const;

    /**
     * Apply the preconditioner on deal.II
     * parallel data structures instead of
     * the ones provided in the Trilinos
     * wrapper class.
     */
    virtual void vmult (dealii::parallel::distributed::Vector<double>       &dst,
                        const dealii::parallel::distributed::Vector<double> &src) const;

    /**
     * Apply the transpose preconditioner on deal.II
     * parallel data structures instead of
     * the ones provided in the Trilinos
     * wrapper class.
     */
    virtual void Tvmult (dealii::parallel::distributed::Vector<double>       &dst,
                         const dealii::parallel::distributed::Vector<double> &src) const;

    /**
     * Exception.
     */
    DeclException1 (ExcNonMatchingMaps,
                    std::string,
                    << "The sparse matrix the preconditioner is based on "
                    << "uses a map that is not compatible to the one in vector "
                    << arg1
                    << ". Check preconditioner and matrix setup.");

    friend class SolverBase;
    friend class PreconditionStokes;

  protected:
    /**
     * This is a pointer to the
     * preconditioner object that
     * is used when applying the
     * preconditioner.
     */
    std_cxx1x::shared_ptr<Epetra_Operator> preconditioner;

    /**
     * Internal communication
     * pattern in case the matrix
     * needs to be copied from
     * deal.II format.
     */
#ifdef DEAL_II_WITH_MPI
    Epetra_MpiComm     communicator;
#else
    Epetra_SerialComm  communicator;
#endif

    /**
     * Internal Trilinos map in
     * case the matrix needs to be
     * copied from deal.II format.
     */
    std_cxx1x::shared_ptr<Epetra_Map>   vector_distributor;
  };


  /**
   * A wrapper class for a (pointwise) Jacobi preconditioner for
   * Trilinos matrices. This preconditioner works both in serial and in
   * parallel, depending on the matrix it is based on.
   *
   * The AdditionalData data structure allows to set preconditioner
   * options. For the Jacobi preconditioner, these options are the
   * damping parameter <tt>omega</tt> and a <tt>min_diagonal</tt>
   * argument that can be used to make the preconditioner work even if
   * the matrix contains some zero elements on the diagonal. The default
   * settings are 1 for the damping parameter and zero for the diagonal
   * augmentation.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Martin Kronbichler, 2008
   */
  class PreconditionJacobi : public PreconditionBase
  {
  public:

    /**
     * Standardized data struct to
     * pipe additional flags to the
     * preconditioner. The
     * parameter <tt>omega</tt>
     * specifies the relaxation
     * parameter in the Jacobi
     * preconditioner. The
     * parameter
     * <tt>min_diagonal</tt> can be
     * used to make the application
     * of the preconditioner also
     * possible when some diagonal
     * elements are zero. In a
     * default application this
     * would mean that we divide by
     * zero, so by setting the
     * parameter
     * <tt>min_diagonal</tt> to a
     * small nonzero value the SOR
     * will work on a matrix that
     * is not too far away from the
     * one we want to
     * treat.
     */
    struct AdditionalData
    {
      /**
       * Constructor. By default, set
       * the damping parameter to
       * one, and do not modify the
       * diagonal.
       */
      AdditionalData (const double       omega = 1,
                      const double       min_diagonal = 0);

      /**
       * This specifies the
       * relaxation parameter in the
       * Jacobi preconditioner.
       */
      double omega;

      /**
       * This specifies the minimum
       * value the diagonal elements
       * should have. This might be
       * necessary when the Jacobi
       * preconditioner is used on
       * matrices with zero diagonal
       * elements. In that case, a
       * straight-forward application
       * would not be possible since
       * we would divide by zero.
       */
      double min_diagonal;
    };

    /**
     * Take the sparse matrix the
     * preconditioner object should
     * be built of, and additional
     * flags (damping parameter,
     * etc.) if there are any.
     */
    void initialize (const SparseMatrix   &matrix,
                     const AdditionalData &additional_data = AdditionalData());
  };




  /**
   * A wrapper class for a (pointwise) SSOR preconditioner for Trilinos
   * matrices. This preconditioner works both in serial and in parallel,
   * depending on the matrix it is based on.
   *
   * The AdditionalData data structure allows to set preconditioner
   * options. For the SSOR preconditioner, these options are the
   * damping/relaxation parameter <tt>omega</tt>, a
   * <tt>min_diagonal</tt> argument that can be used to make the
   * preconditioner work even if the matrix contains some zero elements
   * on the diagonal, and a parameter <tt>overlap</tt> that determines
   * if and how much overlap there should be between the matrix
   * partitions on the various MPI processes. The default settings are 1
   * for the relaxation parameter, 0 for the diagonal augmentation and 0
   * for the overlap.
   *
   * Note that a parallel application of the SSOR preconditioner is
   * actually a block-Jacobi preconditioner with block size equal to the
   * local matrix size. Spoken more technically, this parallel operation
   * is an <a
   * href="http://en.wikipedia.org/wiki/Additive_Schwarz_method">additive
   * Schwarz method</a> with an SSOR <em>approximate solve</em> as inner
   * solver, based on the outer parallel partitioning.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Wolfgang Bangerth, 2008
   */
  class PreconditionSSOR : public PreconditionBase
  {
  public:

    /**
     * Standardized data struct to
     * pipe additional flags to the
     * preconditioner. The
     * parameter <tt>omega</tt>
     * specifies the relaxation
     * parameter in the SSOR
     * preconditioner. The
     * parameter
     * <tt>min_diagonal</tt> can be
     * used to make the application
     * of the preconditioner also
     * possible when some diagonal
     * elements are zero. In a
     * default application this
     * would mean that we divide by
     * zero, so by setting the
     * parameter
     * <tt>min_diagonal</tt> to a
     * small nonzero value the SOR
     * will work on a matrix that
     * is not too far away from the
     * one we want to
     * treat. Finally,
     * <tt>overlap</tt> governs the
     * overlap of the partitions
     * when the preconditioner runs
     * in parallel, forming a
     * so-called additive Schwarz
     * preconditioner.
     */
    struct AdditionalData
    {
      /**
       * Constructor. By default, set
       * the damping parameter to
       * one, we do not modify the
       * diagonal, and there is no
       * overlap (i.e. in parallel,
       * we run a BlockJacobi
       * preconditioner, where each
       * block is inverted
       * approximately by an SSOR.
       */
      AdditionalData (const double       omega = 1,
                      const double       min_diagonal = 0,
                      const unsigned int overlap = 0);

      /**
       * This specifies the (over-)
       * relaxation parameter in the
       * SSOR preconditioner.
       */
      double omega;

      /**
       * This specifies the minimum
       * value the diagonal elements
       * should have. This might be
       * necessary when the SSOR
       * preconditioner is used on
       * matrices with zero diagonal
       * elements. In that case, a
       * straight-forward application
       * would not be possible since
       * we divide by the diagonal
       * element.
       */
      double min_diagonal;

      /**
       * This determines how large
       * the overlap of the local
       * matrix portions on each
       * processor in a parallel
       * application should be.
       */
      unsigned int overlap;
    };

    /**
     * Take the sparse matrix the
     * preconditioner object should
     * be built of, and additional
     * flags (damping parameter,
     * overlap in parallel
     * computations, etc.) if there
     * are any.
     */
    void initialize (const SparseMatrix   &matrix,
                     const AdditionalData &additional_data = AdditionalData());
  };




  /**
   * A wrapper class for a (pointwise) SOR preconditioner for Trilinos
   * matrices. This preconditioner works both in serial and in parallel,
   * depending on the matrix it is based on.
   *
   * The AdditionalData data structure allows to set preconditioner
   * options. For the SOR preconditioner, these options are the
   * damping/relaxation parameter <tt>omega</tt>, a
   * <tt>min_diagonal</tt> argument that can be used to make the
   * preconditioner work even if the matrix contains some zero elements
   * on the diagonal, and a parameter <tt>overlap</tt> that determines
   * if and how much overlap there should be between the matrix
   * partitions on the various MPI processes. The default settings are 1
   * for the relaxation parameter, 0 for the diagonal augmentation and 0
   * for the overlap.
   *
   * Note that a parallel application of the SOR preconditioner is
   * actually a block-Jacobi preconditioner with block size equal to the
   * local matrix size. Spoken more technically, this parallel operation
   * is an <a
   * href="http://en.wikipedia.org/wiki/Additive_Schwarz_method">additive
   * Schwarz method</a> with an SOR <em>approximate solve</em> as inner
   * solver, based on the outer parallel partitioning.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Martin Kronbichler, 2008
   */
  class PreconditionSOR : public PreconditionBase
  {
  public:

    /**
     * Standardized data struct to
     * pipe additional flags to the
     * preconditioner. The
     * parameter <tt>omega</tt>
     * specifies the relaxation
     * parameter in the SOR
     * preconditioner. The
     * parameter
     * <tt>min_diagonal</tt> can be
     * used to make the application
     * of the preconditioner also
     * possible when some diagonal
     * elements are zero. In a
     * default application this
     * would mean that we divide by
     * zero, so by setting the
     * parameter
     * <tt>min_diagonal</tt> to a
     * small nonzero value the SOR
     * will work on a matrix that
     * is not too far away from the
     * one we want to
     * treat. Finally,
     * <tt>overlap</tt> governs the
     * overlap of the partitions
     * when the preconditioner runs
     * in parallel, forming a
     * so-called additive Schwarz
     * preconditioner.
     */
    struct AdditionalData
    {
      /**
       * Constructor. By default, set
       * the damping parameter to
       * one, we do not modify the
       * diagonal, and there is no
       * overlap (i.e. in parallel,
       * we run a BlockJacobi
       * preconditioner, where each
       * block is inverted
       * approximately by an SOR.
       */
      AdditionalData (const double       omega = 1,
                      const double       min_diagonal = 0,
                      const unsigned int overlap = 0);

      /**
       * This specifies the (over-)
       * relaxation parameter in the
       * SOR preconditioner.
       */
      double omega;

      /**
       * This specifies the minimum
       * value the diagonal elements
       * should have. This might be
       * necessary when the SOR
       * preconditioner is used on
       * matrices with zero diagonal
       * elements. In that case, a
       * straight-forward application
       * would not be possible since
       * we divide by the diagonal
       * element.
       */
      double min_diagonal;

      /**
       * This determines how large
       * the overlap of the local
       * matrix portions on each
       * processor in a parallel
       * application should be.
       */
      unsigned int overlap;
    };

    /**
     * Take the sparse matrix the
     * preconditioner object should
     * be built of, and additional
     * flags (damping parameter,
     * overlap in parallel
     * computations etc.) if there
     * are any.
     */
    void initialize (const SparseMatrix   &matrix,
                     const AdditionalData &additional_data = AdditionalData());
  };



  /**
   * A wrapper class for an incomplete Cholesky factorization (IC)
   * preconditioner for @em symmetric Trilinos matrices. This
   * preconditioner works both in serial and in parallel, depending on
   * the matrix it is based on. In general, an incomplete factorization
   * does not take all fill-in elements that would appear in a full
   * factorization (that is the basis for a direct solve). Trilinos
   * allows to set the amount of fill-in elements, governed by the
   * additional data argument <tt>ic_fill</tt>, so one can gradually
   * choose between a factorization on the sparse matrix structure only
   * (<tt>ic_fill=0</tt>) to a full factorization (<tt>ic_fill</tt> in
   * the range of 10 to 50, depending on the spatial dimension of the
   * PDE problem and the degree of the finite element basis functions;
   * generally, more required fill-in elements require this parameter to
   * be set to a higher integer value).
   *
   * The AdditionalData data structure allows to set preconditioner
   * options. Besides the fill-in argument, these options are some
   * options for perturbations (see the documentation of the
   * AdditionalData structure for details), and a parameter
   * <tt>overlap</tt> that determines if and how much overlap there
   * should be between the matrix partitions on the various MPI
   * processes.  The default settings are 0 for the additional fill-in, 0
   * for the absolute augmentation tolerance, 1 for the relative
   * augmentation tolerance, 0 for the overlap.
   *
   * Note that a parallel application of the IC preconditioner is
   * actually a block-Jacobi preconditioner with block size equal to the
   * local matrix size. Spoken more technically, this parallel operation
   * is an <a
   * href="http://en.wikipedia.org/wiki/Additive_Schwarz_method">additive
   * Schwarz method</a> with an IC <em>approximate solve</em> as inner
   * solver, based on the (outer) parallel partitioning.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Martin Kronbichler, 2008
   */
  class PreconditionIC : public PreconditionBase
  {
  public:
    /**
     * Standardized data struct to
     * pipe additional parameters
     * to the preconditioner. The
     * Trilinos IC decomposition
     * allows for some fill-in, so
     * it actually is a threshold
     * incomplete Cholesky
     * factorization. The amount of
     * fill-in, and hence, the
     * amount of memory used by
     * this preconditioner, is
     * controlled by the parameter
     * <tt>ic_fill</tt>, which
     * specifies this as a
     * double. When forming the
     * preconditioner, for certain
     * problems bad conditioning
     * (or just bad luck) can cause
     * the preconditioner to be
     * very poorly
     * conditioned. Hence it can
     * help to add diagonal
     * perturbations to the
     * original matrix and form the
     * preconditioner for this
     * slightly better
     * matrix. <tt>ic_atol</tt> is
     * an absolute perturbation
     * that is added to the
     * diagonal before forming the
     * prec, and <tt>ic_rtol</tt>
     * is a scaling factor $rtol
     * \geq 1$. The last parameter
     * specifies the overlap of the
     * partitions when the
     * preconditioner runs in
     * parallel.
     */
    struct AdditionalData
    {
      /**
       * Constructor. By default, set
       * the drop tolerance to 0, the
       * level of extra fill-ins is
       * set to be zero (just use the
       * matrix structure, do not
       * generate any additional
       * fill-in), the tolerance
       * level are 0 and 1,
       * respectively, and the
       * overlap in case of a
       * parallel execution is
       * zero. This overlap in a
       * block-application of the IC
       * in the parallel case makes
       * the preconditioner a
       * so-called additive Schwarz
       * preconditioner.
       */
      AdditionalData (const unsigned int ic_fill = 0,
                      const double       ic_atol = 0.,
                      const double       ic_rtol = 1.,
                      const unsigned int overlap = 0);

      /**
       * This specifies the amount of
       * additional fill-in elements
       * besides the sparse matrix
       * structure. When
       * <tt>ic_fill</tt> is large,
       * this means that many
       * fill-ins will be added, so
       * that the IC preconditioner
       * comes closer to a direct
       * sparse Cholesky
       * decomposition. Note,
       * however, that this will
       * drastically increase the
       * memory requirement,
       * especially when the
       * preconditioner is used in
       * 3D.
       */
      unsigned int ic_fill;

      /**
       * This specifies the amount of
       * an absolute perturbation
       * that will be added to the
       * diagonal of the matrix,
       * which sometimes can help to
       * get better preconditioners.
       */
      double ic_atol;

      /**
       * This specifies the factor by
       * which the diagonal of the
       * matrix will be scaled, which
       * sometimes can help to get
       * better preconditioners.
       */
      double ic_rtol;

      /**
       * This determines how large
       * the overlap of the local
       * matrix portions on each
       * processor in a parallel
       * application should be.
       */
      unsigned int overlap;
    };

    /**
     * Initialize function. Takes
     * the matrix the
     * preconditioner should be
     * computed of, and additional
     * flags if there are any.
     */
    void initialize (const SparseMatrix   &matrix,
                     const AdditionalData &additional_data = AdditionalData());
  };



  /**
   * A wrapper class for an incomplete LU factorization (ILU)
   * preconditioner for Trilinos matrices. This preconditioner works
   * both in serial and in parallel, depending on the matrix it is based
   * on. In general, an incomplete factorization does not take all
   * fill-in elements that would appear in a full factorization (that is
   * the basis for a direct solve). Trilinos allows to set the amount of
   * fill-in elements, governed by the additional data argument
   * <tt>ilu_fill</tt>, so one can gradually choose between a
   * factorization on the sparse matrix structure only
   * (<tt>ilu_fill=0</tt>) to a full factorization (<tt>ilu_fill</tt> in
   * the range of 10 to 50, depending on the spatial dimension of the
   * PDE problem and the degree of the finite element basis functions;
   * generally, more required fill-in elements require this parameter to
   * be set to a higher integer value).
   *
   * The AdditionalData data structure allows to set preconditioner
   * options. Besides the fill-in argument, these options are some
   * options for perturbations (see the documentation of the
   * AdditionalData structure for details), and a parameter
   * <tt>overlap</tt> that determines if and how much overlap there
   * should be between the matrix partitions on the various MPI
   * processes. The default settings are 0 for the additional fill-in, 0
   * for the absolute augmentation tolerance, 1 for the relative
   * augmentation tolerance, 0 for the overlap.
   *
   * Note that a parallel application of the ILU preconditioner is
   * actually a block-Jacobi preconditioner with block size equal to the
   * local matrix size. Spoken more technically, this parallel operation
   * is an <a
   * href="http://en.wikipedia.org/wiki/Additive_Schwarz_method">additive
   * Schwarz method</a> with an ILU <em>approximate solve</em> as inner
   * solver, based on the (outer) parallel partitioning.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Martin Kronbichler, 2008
   */
  class PreconditionILU : public PreconditionBase
  {
  public:
    /**
     * Standardized data struct to
     * pipe additional parameters
     * to the preconditioner. The
     * Trilinos ILU decomposition
     * allows for some fill-in, so
     * it actually is a threshold
     * incomplete LU
     * factorization. The amount of
     * fill-in, and hence, the
     * amount of memory used by
     * this preconditioner, is
     * controlled by the parameter
     * <tt>ilu_fill</tt>, which
     * specifies this as a
     * double. When forming the
     * preconditioner, for certain
     * problems bad conditioning
     * (or just bad luck) can cause
     * the preconditioner to be
     * very poorly
     * conditioned. Hence it can
     * help to add diagonal
     * perturbations to the
     * original matrix and form the
     * preconditioner for this
     * slightly better
     * matrix. <tt>ilu_atol</tt> is
     * an absolute perturbation
     * that is added to the
     * diagonal before forming the
     * prec, and <tt>ilu_rtol</tt>
     * is a scaling factor $rtol
     * \geq 1$. The last parameter
     * specifies the overlap of the
     * partitions when the
     * preconditioner runs in
     * parallel.
     */
    struct AdditionalData
    {
      /**
       * Constructor. By default, the
       * level of extra fill-ins is
       * set to be zero (just use the
       * matrix structure, do not
       * generate any additional
       * fill-in), the tolerance
       * level are 0 and 1,
       * respectively, and the
       * overlap in case of a
       * parallel execution is
       * zero. This overlap in a
       * block-application of the ILU
       * in the parallel case makes
       * the preconditioner a
       * so-called additive Schwarz
       * preconditioner.
       */
      AdditionalData (const unsigned int ilu_fill = 0,
                      const double       ilu_atol = 0.,
                      const double       ilu_rtol = 1.,
                      const unsigned int overlap  = 0);

      /**
       * This specifies the amount of
       * additional fill-in elements
       * besides the sparse matrix
       * structure. When
       * <tt>ilu_fill</tt> is large,
       * this means that many
       * fill-ins will be added, so
       * that the ILU preconditioner
       * comes closer to a (direct)
       * sparse LU
       * decomposition. Note,
       * however, that this will
       * drastically increase the
       * memory requirement,
       * especially when the
       * preconditioner is used in
       * 3D.
       */
      unsigned int ilu_fill;

      /**
       * This specifies the amount of
       * an absolute perturbation
       * that will be added to the
       * diagonal of the matrix,
       * which sometimes can help to
       * get better preconditioners.
       */
      double ilu_atol;

      /**
       * This specifies the factor by
       * which the diagonal of the
       * matrix will be scaled, which
       * sometimes can help to get
       * better preconditioners.
       */
      double ilu_rtol;

      /**
       * This determines how large
       * the overlap of the local
       * matrix portions on each
       * processor in a parallel
       * application should be.
       */
      unsigned int overlap;
    };

    /**
     * Initialize function. Takes
     * the matrix which is used to
     * form the preconditioner, and
     * additional flags if there
     * are any.
     */
    void initialize (const SparseMatrix   &matrix,
                     const AdditionalData &additional_data = AdditionalData());
  };






  /**
   * A wrapper class for a thresholded incomplete LU factorization (ILU-T)
   * preconditioner for Trilinos matrices. This preconditioner works both in
   * serial and in parallel, depending on the matrix it is based on. In
   * general, an incomplete factorization does not take all fill-in elements
   * that would appear in a full factorization (that is the basis for a direct
   * solve). For the ILU-T precondtioner, the parameter <tt>ilut_drop</tt>
   * lets the user specify which elements should be dropped (i.e., should not
   * be part of the incomplete decomposition). Trilinos calculates first the
   * complete factorization for one row, and then skips those elements that
   * are lower than the threshold. This is the main difference to the
   * non-thresholded ILU preconditioner, where the parameter
   * <tt>ilut_fill</tt> governs the incomplete factorization structure. This
   * parameter is available here as well, but provides only some extra
   * information here.
   *
   * The AdditionalData data structure allows to set preconditioner
   * options. Besides the fill-in arguments, these options are some options
   * for perturbations (see the documentation of the AdditionalData structure
   * for details), and a parameter <tt>overlap</tt> that determines if and how
   * much overlap there should be between the matrix partitions on the various
   * MPI processes. The default settings are 0 for the additional fill-in, 0
   * for the absolute augmentation tolerance, 1 for the relative augmentation
   * tolerance, 0 for the overlap.
   *
   * Note that a parallel application of the ILU-T preconditioner is
   * actually a block-Jacobi preconditioner with block size equal to the
   * local matrix size. Spoken more technically, this parallel operation
   * is an <a
   * href="http://en.wikipedia.org/wiki/Additive_Schwarz_method">additive
   * Schwarz method</a> with an ILU <em>approximate solve</em> as inner
   * solver, based on the (outer) parallel partitioning.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Martin Kronbichler, 2009
   */
  class PreconditionILUT : public PreconditionBase
  {
  public:
    /**
     * Standardized data struct to pipe
     * additional parameters to the
     * preconditioner. The Trilinos ILU-T
     * decomposition allows for some
     * fill-in, so it actually is a
     * threshold incomplete LU
     * factorization. The amount of
     * fill-in, and hence, the amount of
     * memory used by this
     * preconditioner, is controlled by
     * the parameters <tt>ilut_drop</tt>
     * and <tt>ilut_fill</tt>, which
     * specifies a threshold about which
     * values should form the incomplete
     * factorization and the level of
     * additional fill-in. When forming
     * the preconditioner, for certain
     * problems bad conditioning (or just
     * bad luck) can cause the
     * preconditioner to be very poorly
     * conditioned. Hence it can help to
     * add diagonal perturbations to the
     * original matrix and form the
     * preconditioner for this slightly
     * better matrix. <tt>ilut_atol</tt>
     * is an absolute perturbation that
     * is added to the diagonal before
     * forming the prec, and
     * <tt>ilu_rtol</tt> is a scaling
     * factor $rtol \geq 1$. The last
     * parameter specifies the overlap of
     * the partitions when the
     * preconditioner runs in parallel.
     */
    struct AdditionalData
    {
      /**
       * Constructor. By default, no
       * element will be dropped, the level
       * of extra fill-ins is set to be
       * zero (just use the matrix
       * structure, do not generate any
       * additional fill-in except the one
       * that results from non-dropping
       * large elements), the tolerance
       * level are 0 and 1, respectively,
       * and the overlap in case of a
       * parallel execution is zero. This
       * overlap in a block-application of
       * the ILU in the parallel case makes
       * the preconditioner a so-called
       * additive Schwarz preconditioner.
       */
      AdditionalData (const double       ilut_drop = 0.,
                      const unsigned int ilut_fill = 0,
                      const double       ilut_atol = 0.,
                      const double       ilut_rtol = 1.,
                      const unsigned int overlap  = 0);

      /**
       * This specifies the relative size
       * of elements which should be
       * dropped when forming an incomplete
       * LU decomposition with threshold.
       */
      double ilut_drop;

      /**
       * This specifies the amount of
       * additional fill-in elements
       * besides the sparse matrix
       * structure. When
       * <tt>ilu_fill</tt> is large,
       * this means that many
       * fill-ins will be added, so
       * that the ILU preconditioner
       * comes closer to a (direct)
       * sparse LU
       * decomposition. Note,
       * however, that this will
       * drastically increase the
       * memory requirement,
       * especially when the
       * preconditioner is used in
       * 3D.
       */
      unsigned int ilut_fill;

      /**
       * This specifies the amount of
       * an absolute perturbation
       * that will be added to the
       * diagonal of the matrix,
       * which sometimes can help to
       * get better preconditioners.
       */
      double ilut_atol;

      /**
       * This specifies the factor by
       * which the diagonal of the
       * matrix will be scaled, which
       * sometimes can help to get
       * better preconditioners.
       */
      double ilut_rtol;

      /**
       * This determines how large
       * the overlap of the local
       * matrix portions on each
       * processor in a parallel
       * application should be.
       */
      unsigned int overlap;
    };

    /**
     * Initialize function. Takes
     * the matrix which is used to
     * form the preconditioner, and
     * additional flags if there
     * are any.
     */
    void initialize (const SparseMatrix   &matrix,
                     const AdditionalData &additional_data = AdditionalData());
  };



  /**
   * A wrapper class for a sparse direct LU decomposition on parallel
   * blocks for Trilinos matrices. When run in serial, this corresponds
   * to a direct solve on the matrix.
   *
   * The AdditionalData data structure allows to set preconditioner
   * options.
   *
   * Note that a parallel application of the block direct solve
   * preconditioner is actually a block-Jacobi preconditioner with block
   * size equal to the local matrix size. Spoken more technically, this
   * parallel operation is an <a
   * href="http://en.wikipedia.org/wiki/Additive_Schwarz_method">additive
   * Schwarz method</a> with an <em>exact solve</em> as inner solver,
   * based on the (outer) parallel partitioning.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Martin Kronbichler, 2008
   */
  class PreconditionBlockwiseDirect : public PreconditionBase
  {
  public:
    /**
     * Standardized data struct to
     * pipe additional parameters
     * to the preconditioner.
     */
    struct AdditionalData
    {
      /**
       * Constructor.
       */
      AdditionalData (const unsigned int overlap  = 0);


      /**
       * This determines how large
       * the overlap of the local
       * matrix portions on each
       * processor in a parallel
       * application should be.
       */
      unsigned int overlap;
    };

    /**
     * Initialize function. Takes
     * the matrix which is used to
     * form the preconditioner, and
     * additional flags if there
     * are any.
     */
    void initialize (const SparseMatrix   &matrix,
                     const AdditionalData &additional_data = AdditionalData());
  };






  /**
   * A wrapper class for a Chebyshev preconditioner for Trilinos matrices.
   *
   * The AdditionalData data structure allows to set preconditioner
   * options.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Martin Kronbichler, 2008
   */
  class PreconditionChebyshev : public PreconditionBase
  {
  public:
    /**
     * Standardized data struct to
     * pipe additional parameters
     * to the preconditioner.
     */
    struct AdditionalData
    {
      /**
       * Constructor.
       */
      AdditionalData (const unsigned int degree           = 1,
                      const double       max_eigenvalue   = 10.,
                      const double       eigenvalue_ratio = 30.,
                      const double       min_eigenvalue   = 1.,
                      const double       min_diagonal     = 1e-12,
                      const bool         nonzero_starting = false);

      /**
       * This determines the degree of the
       * Chebyshev polynomial. The degree
       * of the polynomial gives the number
       * of matrix-vector products to be
       * performed for one application of
       * the vmult() operation.
       */
      unsigned int degree;

      /**
       * This sets the maximum eigenvalue
       * of the matrix, which needs to be
       * set properly for appropriate
       * performance of the Chebyshev
       * preconditioner.
       */
      double max_eigenvalue;

      /**
       * This sets the ratio between the
       * maximum and the minimum
       * eigenvalue.
       */
      double eigenvalue_ratio;

      /**
       * This sets the minimum eigenvalue,
       * which is an optional parameter
       * only used internally for checking
       * whether we use an identity matrix.
       */
      double min_eigenvalue;

      /**
       * This sets a threshold below which
       * the diagonal element will not be
       * inverted in the Chebyshev
       * algorithm.
       */
      double min_diagonal;

      /**
       * When this flag is set to
       * <tt>true</tt>, it enables the
       * method <tt>vmult(dst, src)</tt> to
       * use non-zero data in the vector
       * <tt>dst</tt>, appending to it the
       * Chebyshev corrections. This can be
       * useful in some situations
       * (e.g. when used for high-frequency
       * error smoothing), but not the way
       * the solver classes expect a
       * preconditioner to work (where one
       * ignores the content in
       * <tt>dst</tt> for the
       * preconditioner application). The
       * user should really know what she
       * is doing when touching this flag.
       */
      bool nonzero_starting;
    };

    /**
     * Initialize function. Takes
     * the matrix which is used to
     * form the preconditioner, and
     * additional flags if there
     * are any.
     */
    void initialize (const SparseMatrix   &matrix,
                     const AdditionalData &additional_data = AdditionalData());
  };



  /**
   * This class implements an algebraic multigrid (AMG) preconditioner based
   * on the Trilinos ML implementation, which is a black-box preconditioner
   * that works well for many PDE-based linear problems.  What this class does
   * is twofold.  When the initialize() function is invoked, a ML
   * preconditioner object is created based on the matrix that we want the
   * preconditioner to be based on. A call of the respective
   * <code>vmult</code> function does call the respective operation in the
   * Trilinos package, where it is called <code>ApplyInverse</code>. Use of
   * this class is explained in the step-31 tutorial program.
   *
   * Since the Trilinos objects we want to use are heavily dependent on Epetra
   * objects, we recommend using this class in conjunction with Trilinos
   * (Epetra) sparse matrices and vectors. There is support for use with
   * matrices of the deal.II::SparseMatrix class and corresponding vectors,
   * too, but this requires generating a copy of the matrix, which is slower
   * and takes (much) more memory. When doing such a copy operation, we can
   * still profit from the fact that some of the entries in the preconditioner
   * matrix are zero and hence can be neglected.
   *
   * The implementation is able to distinguish between matrices from elliptic
   * problems and convection dominated problems. We use the standard options
   * provided by Trilinos ML for elliptic problems, except that we use a
   * Chebyshev smoother instead of a symmetric Gauss-Seidel smoother.  For
   * most elliptic problems, Chebyshev provides a better damping of high
   * frequencies (in the algebraic sense) than Gauss-Seidel (SSOR), and is
   * faster (Chebyshev requires only some matrix-vector products, whereas SSOR
   * requires substitutions which are more expensive). Moreover, Chebyshev is
   * perfectly parallel in the sense that it does not degenerate when used on
   * many processors. SSOR, on the other hand, gets more Jacobi-like on many
   * processors.
   *
   * For proper functionality of this class we recommend using Trilinos v9.0
   * and higher. Older versions may have problems with generating the
   * coarse-matrix structure when using matrices with many nonzero entries per
   * row (i.e., matrices stemming from higher order finite element
   * discretizations).
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Martin Kronbichler, 2008
   */
  class PreconditionAMG : public PreconditionBase
  {
  public:

    /**
     * A data structure that is used to control details of how the algebraic
     * multigrid is set up. The flags detailed in here are then passed to
     * the Trilinos ML implementation. A structure of the current type are
     * passed to the constructor of PreconditionAMG.
     */
    struct AdditionalData
    {
      /**
       * Constructor. By default, we
       * pretend to work on elliptic
       * problems with linear finite
       * elements on a scalar equation.
       */
      AdditionalData (const bool                             elliptic = true,
                      const bool                             higher_order_elements = false,
                      const unsigned int                     n_cycles = 1,
                      const bool                             w_cyle = false,
                      const double                           aggregation_threshold = 1e-4,
                      const std::vector<std::vector<bool> > &constant_modes = std::vector<std::vector<bool> > (1),
                      const unsigned int                     smoother_sweeps = 2,
                      const unsigned int                     smoother_overlap = 0,
                      const bool                             output_details = false);

      /**
       * Determines whether the AMG
       * preconditioner should be optimized
       * for elliptic problems (ML option
       * smoothed aggregation SA, using a
       * Chebyshev smoother) or for
       * non-elliptic problems (ML option
       * non-symmetric smoothed aggregation
       * NSSA, smoother is SSOR with
       * underrelaxation).
       */
      bool elliptic;

      /**
       * Determines whether the matrix that
       * the preconditioner is built upon
       * is generated from linear or
       * higher-order elements.
       */
      bool higher_order_elements;

      /**
       * Defines how many multigrid cycles
       * should be performed by the
       * preconditioner.
       */
      unsigned int n_cycles;

      /**
       * Defines whether a w-cycle should be
       * used instead of the standard setting
       * of a v-cycle.
       */
      bool w_cycle;

      /**
       * This threshold tells the AMG setup
       * how the coarsening should be
       * performed. In the AMG used by ML,
       * all points that strongly couple
       * with the tentative coarse-level
       * point form one aggregate. The term
       * <em>strong coupling</em> is
       * controlled by the variable
       * <tt>aggregation_threshold</tt>,
       * meaning that all elements that are
       * not smaller than
       * <tt>aggregation_threshold</tt>
       * times the diagonal element do
       * couple strongly.
       */
      double aggregation_threshold;

      /**
       * Specifies the constant modes (near
       * null space) of the matrix. This
       * parameter tells AMG whether we
       * work on a scalar equation (where
       * the near null space only consists
       * of ones) or on a vector-valued
       * equation.
       */
      std::vector<std::vector<bool> > constant_modes;

      /**
       * Determines how many sweeps of the
       * smoother should be performed. When
       * the flag <tt>elliptic</tt> is set
       * to <tt>true</tt>, i.e., for
       * elliptic or almost elliptic
       * problems, the polynomial degree of
       * the Chebyshev smoother is set to
       * <tt>smoother_sweeps</tt>. The term
       * sweeps refers to the number of
       * matrix-vector products performed
       * in the Chebyshev case. In the
       * non-elliptic case,
       * <tt>smoother_sweeps</tt> sets the
       * number of SSOR relaxation sweeps
       * for post-smoothing to be
       * performed.
       */
      unsigned int smoother_sweeps;

      /**
       * Determines the overlap in the
       * SSOR/Chebyshev error smoother when
       * run in parallel.
       */
      unsigned int smoother_overlap;

      /**
       * If this flag is set to
       * <tt>true</tt>, then internal
       * information from the ML
       * preconditioner is printed to
       * screen. This can be useful when
       * debugging the preconditioner.
       */
      bool output_details;
    };

    /**
     * Let Trilinos compute a multilevel
     * hierarchy for the solution of a
     * linear system with the given
     * matrix. The function uses the
     * matrix format specified in
     * TrilinosWrappers::SparseMatrix.
     */
    void initialize (const SparseMatrix                    &matrix,
                     const AdditionalData &additional_data = AdditionalData());

    /**
     * Let Trilinos compute a multilevel
     * hierarchy for the solution of a
     * linear system with the given
     * matrix. The function uses the
     * matrix format specified in
     * TrilinosWrappers::SparseMatrix.
     *
     * This function is similar to the one
     * above, but allows the user to set
     * all the options of the Trilinos ML
     * preconditioner. In order to find out
     * about all the options for ML, we
     * refer to the <a
     * href=http://trilinos.sandia.gov/packages/ml/mlguide5.pdf>ML
     * user's guide</a>. In particular,
     * users need to follow the ML
     * instructions in case a vector-valued
     * problem ought to be solved.
     */
    void initialize (const SparseMatrix           &matrix,
                     const Teuchos::ParameterList &ml_parameters);

    /**
     * Let Trilinos compute a multilevel
     * hierarchy for the solution of a
     * linear system with the given
     * matrix. This function takes a
     * deal.ii matrix and copies the
     * content into a Trilinos matrix, so
     * the function can be considered
     * rather inefficient.
     */
    template <typename number>
    void initialize (const ::dealii::SparseMatrix<number> &deal_ii_sparse_matrix,
                     const AdditionalData                 &additional_data = AdditionalData(),
                     const double                          drop_tolerance = 1e-13,
                     const ::dealii::SparsityPattern      *use_this_sparsity = 0);

    /**
     * This function can be used for a
     * faster recalculation of the
     * preconditioner construction when
     * the matrix entries underlying the
     * preconditioner have changed, but
     * the matrix sparsity pattern has
     * remained the same. What this
     * function does is taking the
     * already generated coarsening
     * structure, computing the AMG
     * prolongation and restriction
     * according to a smoothed
     * aggregation strategy and then
     * building the whole multilevel
     * hiearchy. This function can be
     * considerably faster than the
     * initialize function, since the
     * coarsening pattern is usually the
     * most difficult thing to do when
     * setting up the AMG ML
     * preconditioner.
     */
    void reinit ();

    /**
     * Destroys the preconditioner, leaving
     * an object like just after having
     * called the constructor.
     */
    void clear ();

    /**
     * Prints an estimate of the memory
     * consumption of this class.
     */
    size_type memory_consumption () const;

  private:
    /**
     * A copy of the deal.II matrix into
     * Trilinos format.
     */
    std_cxx1x::shared_ptr<SparseMatrix> trilinos_matrix;
  };



  /**
   * A wrapper class for an identity preconditioner for Trilinos matrices.
   *
   * @ingroup TrilinosWrappers
   * @ingroup Preconditioners
   * @author Bruno Turcksin, 2013
   */
  class PreconditionIdentity : public PreconditionBase
  {
  public:

    /**
     * Apply the preconditioner, i.e., dst = src.
     */
    void vmult (VectorBase       &dst,
                const VectorBase &src) const;

    /**
     * Apply the transport conditioner, i.e., dst = src.
     */
    void Tvmult (VectorBase       &dst,
                 const VectorBase &src) const;

    /**
     * Apply the preconditioner on deal.II data structures
     * instead of the ones provided in the Trilinos wrapper class,
     * i.e., dst = src.
     */
    void vmult (dealii::Vector<double>       &dst,
                const dealii::Vector<double> &src) const;

    /**
     * Apply the transpose preconditioner on deal.II data structures
     * instead of the ones provided in the Trilinos wrapper class,
     * i.e. dst = src.
     */
    void Tvmult (dealii::Vector<double>       &dst,
                 const dealii::Vector<double> &src) const;

    /**
     * Apply the preconditioner on deal.II parallel data structures
     * instead of the ones provided in the Trilinos wrapper class,
     * i.e., dst = src.
     */
    void vmult (parallel::distributed::Vector<double>       &dst,
                const dealii::parallel::distributed::Vector<double> &src) const;

    /**
     * Apply the transpose preconditioner on deal.II parallel data structures
     * instead of the ones provided in the Trilinos wrapper class,
     * i.e., dst = src.
     */
    void Tvmult (parallel::distributed::Vector<double>       &dst,
                 const dealii::parallel::distributed::Vector<double> &src) const;
  };



// -------------------------- inline and template functions ----------------------


#ifndef DOXYGEN

  inline
  void
  PreconditionBase::vmult (VectorBase       &dst,
                           const VectorBase &src) const
  {
    Assert (dst.vector_partitioner().SameAs(preconditioner->OperatorRangeMap()),
            ExcNonMatchingMaps("dst"));
    Assert (src.vector_partitioner().SameAs(preconditioner->OperatorDomainMap()),
            ExcNonMatchingMaps("src"));

    const int ierr = preconditioner->ApplyInverse (src.trilinos_vector(),
                                                   dst.trilinos_vector());
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
  }

  inline
  void
  PreconditionBase::Tvmult (VectorBase       &dst,
                            const VectorBase &src) const
  {
    Assert (dst.vector_partitioner().SameAs(preconditioner->OperatorRangeMap()),
            ExcNonMatchingMaps("dst"));
    Assert (src.vector_partitioner().SameAs(preconditioner->OperatorDomainMap()),
            ExcNonMatchingMaps("src"));

    preconditioner->SetUseTranspose(true);
    const int ierr = preconditioner->ApplyInverse (src.trilinos_vector(),
                                                   dst.trilinos_vector());
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
    preconditioner->SetUseTranspose(false);
  }


  // For the implementation of
  // the <code>vmult</code>
  // function with deal.II data
  // structures we note that
  // invoking a call of the
  // Trilinos preconditioner
  // requires us to use Epetra
  // vectors as well. We do this
  // by providing a view, i.e.,
  // feed Trilinos with a
  // pointer to the data, so we
  // avoid copying the content
  // of the vectors during the
  // iteration (this function is
  // only useful when used in
  // serial anyway). In the
  // declaration of the right
  // hand side, we need to cast
  // the source vector (that is
  // <code>const</code> in all
  // deal.II calls) to
  // non-constant value, as this
  // is the way Trilinos wants
  // to have them.
  inline
  void PreconditionBase::vmult (dealii::Vector<double>       &dst,
                                const dealii::Vector<double> &src) const
  {
    AssertDimension (static_cast<TrilinosWrappers::types::int_type>(dst.size()),
                     preconditioner->OperatorDomainMap().NumMyElements());
    AssertDimension (static_cast<TrilinosWrappers::types::int_type>(src.size()),
                     preconditioner->OperatorRangeMap().NumMyElements());
    Epetra_Vector tril_dst (View, preconditioner->OperatorDomainMap(),
                            dst.begin());
    Epetra_Vector tril_src (View, preconditioner->OperatorRangeMap(),
                            const_cast<double *>(src.begin()));

    const int ierr = preconditioner->ApplyInverse (tril_src, tril_dst);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
  }


  inline
  void PreconditionBase::Tvmult (dealii::Vector<double>       &dst,
                                 const dealii::Vector<double> &src) const
  {
    AssertDimension (static_cast<TrilinosWrappers::types::int_type>(dst.size()),
                     preconditioner->OperatorDomainMap().NumMyElements());
    AssertDimension (static_cast<TrilinosWrappers::types::int_type>(src.size()),
                     preconditioner->OperatorRangeMap().NumMyElements());
    Epetra_Vector tril_dst (View, preconditioner->OperatorDomainMap(),
                            dst.begin());
    Epetra_Vector tril_src (View, preconditioner->OperatorRangeMap(),
                            const_cast<double *>(src.begin()));

    preconditioner->SetUseTranspose(true);
    const int ierr = preconditioner->ApplyInverse (tril_src, tril_dst);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
    preconditioner->SetUseTranspose(false);
  }



  inline
  void
  PreconditionBase::vmult (parallel::distributed::Vector<double>       &dst,
                           const parallel::distributed::Vector<double> &src) const
  {
    AssertDimension (static_cast<TrilinosWrappers::types::int_type>(dst.local_size()),
                     preconditioner->OperatorDomainMap().NumMyElements());
    AssertDimension (static_cast<TrilinosWrappers::types::int_type>(src.local_size()),
                     preconditioner->OperatorRangeMap().NumMyElements());
    Epetra_Vector tril_dst (View, preconditioner->OperatorDomainMap(),
                            dst.begin());
    Epetra_Vector tril_src (View, preconditioner->OperatorRangeMap(),
                            const_cast<double *>(src.begin()));

    const int ierr = preconditioner->ApplyInverse (tril_src, tril_dst);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
  }

  inline
  void
  PreconditionBase::Tvmult (parallel::distributed::Vector<double>       &dst,
                            const parallel::distributed::Vector<double> &src) const
  {
    AssertDimension (static_cast<TrilinosWrappers::types::int_type>(dst.local_size()),
                     preconditioner->OperatorDomainMap().NumMyElements());
    AssertDimension (static_cast<TrilinosWrappers::types::int_type>(src.local_size()),
                     preconditioner->OperatorRangeMap().NumMyElements());
    Epetra_Vector tril_dst (View, preconditioner->OperatorDomainMap(),
                            dst.begin());
    Epetra_Vector tril_src (View, preconditioner->OperatorRangeMap(),
                            const_cast<double *>(src.begin()));

    preconditioner->SetUseTranspose(true);
    const int ierr = preconditioner->ApplyInverse (tril_src, tril_dst);
    AssertThrow (ierr == 0, ExcTrilinosError(ierr));
    preconditioner->SetUseTranspose(false);
  }

#endif

}


/*@}*/


DEAL_II_NAMESPACE_CLOSE

#endif // DEAL_II_WITH_TRILINOS

/*----------------------------   trilinos_precondition.h     ---------------------------*/

#endif
/*----------------------------   trilinos_precondition.h     ---------------------------*/