This file is indexed.

/usr/include/deal.II/matrix_free/mapping_info.templates.h is in libdeal.ii-dev 8.1.0-6ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
// ---------------------------------------------------------------------
// $Id: mapping_info.templates.h 30036 2013-07-18 16:55:32Z maier $
//
// Copyright (C) 2011 - 2013 by the deal.II authors
//
// This file is part of the deal.II library.
//
// The deal.II library is free software; you can use it, redistribute
// it, and/or modify it under the terms of the GNU Lesser General
// Public License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
// The full text of the license can be found in the file LICENSE at
// the top level of the deal.II distribution.
//
// ---------------------------------------------------------------------


#include <deal.II/base/utilities.h>
#include <deal.II/base/memory_consumption.h>
#include <deal.II/fe/fe_nothing.h>
#include <deal.II/fe/fe_values.h>
#include <deal.II/fe/mapping_q1.h>

#include <deal.II/matrix_free/mapping_info.h>


DEAL_II_NAMESPACE_OPEN


namespace internal
{
  namespace MatrixFreeFunctions
  {
    // ----------------- actual MappingInfo functions -------------------------

    template <int dim, typename Number>
    MappingInfo<dim,Number>::MappingInfo()
      :
      JxW_values_initialized (false),
      second_derivatives_initialized (false),
      quadrature_points_initialized (false)
    {}



    template <int dim, typename Number>
    void
    MappingInfo<dim,Number>::clear ()
    {
      JxW_values_initialized = false;
      quadrature_points_initialized = false;
      second_derivatives_initialized = false;
      mapping_data_gen.clear();
      cell_type.clear();
      cartesian_data.clear();
      affine_data.clear();
    }



    template <int dim, typename Number>
    UpdateFlags
    MappingInfo<dim,Number>::
    compute_update_flags (const UpdateFlags update_flags,
                          const std::vector<dealii::hp::QCollection<1> > &quad) const
    {
      // this class is build around the evaluation this class is build around
      // the evaluation of inverse gradients, so compute them in any case
      UpdateFlags new_flags = update_inverse_jacobians;

      // if the user requested gradients, need inverse Jacobians
      if (update_flags & update_gradients || update_flags & update_inverse_jacobians)
        new_flags |= update_inverse_jacobians;

      // for JxW, would only need JxW values.
      if (update_flags & update_JxW_values)
        new_flags |= update_JxW_values;

      // for Hessian information, need inverse Jacobians and the derivative of
      // Jacobians (these two together will give use the gradients of the
      // inverse Jacobians, which is what we need)
      if (update_flags & update_hessians || update_flags & update_jacobian_grads)
        new_flags |= update_jacobian_grads;

      if (update_flags & update_quadrature_points)
        new_flags |= update_quadrature_points;

      // there is one more thing: if we have a quadrature formula with only
      // one quadrature point on the first component, but more points on later
      // components, we need to have Jacobian gradients anyway in order to
      // determine whether the Jacobian is constant throughout a cell
      bool formula_with_one_point = false;
      for (unsigned int i=0; i<quad[0].size(); ++i)
        if (quad[0][i].size() == 1)
          {
            formula_with_one_point = true;
            break;
          }
      if (formula_with_one_point == true)
        for (unsigned int comp=1; comp<quad.size(); ++comp)
          for (unsigned int i=0; i<quad[comp].size(); ++i)
            if (quad[comp][i].size() > 1)
              {
                new_flags |= update_jacobian_grads;
                goto end_set;
              }
end_set:
      return new_flags;
    }



    namespace internal
    {
      template <int dim>
      double get_jacobian_size (const dealii::Triangulation<dim> &tria)
      {
        if (tria.n_cells() == 0)
          return 1;
        else return tria.begin()->diameter();
      }
    }



    template <int dim, typename Number>
    void
    MappingInfo<dim,Number>::initialize
    (const dealii::Triangulation<dim>                         &tria,
     const std::vector<std::pair<unsigned int,unsigned int> > &cells,
     const std::vector<unsigned int>                          &active_fe_index,
     const Mapping<dim>                                       &mapping,
     const std::vector<dealii::hp::QCollection<1> >           &quad,
     const UpdateFlags                                         update_flags_input)
    {
      clear();
      const unsigned int n_quads = quad.size();
      const unsigned int n_cells = cells.size();
      const unsigned int vectorization_length =
        VectorizedArray<Number>::n_array_elements;
      Assert (n_cells%vectorization_length == 0, ExcInternalError());
      const unsigned int n_macro_cells = n_cells/vectorization_length;
      mapping_data_gen.resize (n_quads);
      cell_type.resize (n_macro_cells);

      // dummy FE that is used to set up an FEValues object. Do not need the
      // actual finite element because we will only evaluate quantities for
      // the mapping that are independent of the FE
      FE_Nothing<dim> dummy_fe;
      UpdateFlags update_flags = compute_update_flags (update_flags_input, quad);

      if (update_flags & update_JxW_values)
        JxW_values_initialized = true;
      if (update_flags & update_jacobian_grads)
        second_derivatives_initialized = true;
      if (update_flags & update_quadrature_points)
        quadrature_points_initialized = true;

      // when we make comparisons about the size of Jacobians we need to know
      // the approximate size of typical entries in Jacobians. We need to fix
      // the Jacobian size once and for all. We choose the diameter of the
      // first cell (on level zero, which is the best accuracy we can hope
      // for, since diameters on finer levels are computed by differences of
      // nearby cells). If the mesh extends over a certain domain, the
      // precision of double values is essentially limited by this precision.
      const double jacobian_size = internal::get_jacobian_size(tria);

      // objects that hold the data for up to vectorization_length cells while
      // we fill them up. Only after all vectorization_length cells have been
      // processed, we can insert the data into the data structures of this
      // class
      CellData data (jacobian_size);

      for (unsigned int my_q=0; my_q<n_quads; ++my_q)
        {
          MappingInfoDependent &current_data = mapping_data_gen[my_q];
          const unsigned int n_hp_quads = quad[my_q].size();
          AssertIndexRange (0, n_hp_quads);
          current_data.n_q_points.reserve (n_hp_quads);
          current_data.n_q_points_face.reserve (n_hp_quads);
          current_data.quadrature_weights.resize (n_hp_quads);
          std::vector<unsigned int> n_q_points_1d (n_hp_quads),
              step_size_cartesian (n_hp_quads);
          if (n_hp_quads > 1)
            current_data.quad_index_conversion.resize(n_hp_quads);
          for (unsigned int q=0; q<n_hp_quads; ++q)
            {
              n_q_points_1d[q] = quad[my_q][q].size();
              const unsigned int n_q_points =
                Utilities::fixed_power<dim>(n_q_points_1d[q]);
              current_data.n_q_points.push_back (n_q_points);

              current_data.n_q_points_face.push_back
              (Utilities::fixed_power<dim-1>(n_q_points_1d[q]));
              current_data.quadrature.push_back
              (Quadrature<dim>(quad[my_q][q]));
              current_data.face_quadrature.push_back
              (Quadrature<dim-1>(quad[my_q][q]));

              // set quadrature weights in vectorized form
              current_data.quadrature_weights[q].resize(n_q_points);
              for (unsigned int i=0; i<n_q_points; ++i)
                current_data.quadrature_weights[q][i] =
                  current_data.quadrature[q].get_weights()[i];

              if (n_hp_quads > 1)
                current_data.quad_index_conversion[q] = n_q_points;

              // To walk on the diagonal for lexicographic ordering, we have
              // to jump one index ahead in each direction. For direction 0,
              // this is just the next point, for direction 1, it means adding
              // n_q_points_1d, and so on.
              step_size_cartesian[q] = 0;
              unsigned int factor = 1;
              for (unsigned int d=0; d<dim; ++d)
                {
                  step_size_cartesian[q] += factor;
                  factor *= n_q_points_1d[q];
                }
            }

          // if there are no cells, there is nothing to do
          if (cells.size() == 0)
            continue;

          Tensor<3,dim,VectorizedArray<Number> > jac_grad, grad_jac_inv;
          Tensor<1,dim,VectorizedArray<Number> > tmp;

          // encodes the cell types of the current cell. Since several cells
          // must be considered together, this variable holds the individual
          // info of the last chunk of cells
          CellType cell_t [vectorization_length],
                   cell_t_prev [vectorization_length];
          for (unsigned int j=0; j<vectorization_length; ++j)
            cell_t_prev[j] = undefined;

          // fe_values object that is used to compute the mapping data. for
          // the hp case there might be more than one finite element. since we
          // manually select the active FE index and not via a
          // hp::DoFHandler<dim>::active_cell_iterator, we need to manually
          // select the correct finite element, so just hold a vector of
          // FEValues
          std::vector<std_cxx1x::shared_ptr<FEValues<dim> > >
          fe_values (current_data.quadrature.size());
          UpdateFlags update_flags_feval =
            (update_flags & update_inverse_jacobians ? update_jacobians : update_default) |
            (update_flags & update_jacobian_grads ? update_jacobian_grads : update_default) |
            (update_flags & update_quadrature_points ? update_quadrature_points : update_default);

          // resize the fields that have fixed size or for which we know
          // something from an earlier loop
          current_data.rowstart_q_points.resize (n_macro_cells+1);
          if (my_q > 0)
            {
              const unsigned int n_cells_var =
                mapping_data_gen[0].rowstart_jacobians.size()-1;
              current_data.rowstart_jacobians.reserve (n_cells_var+1);
              const unsigned int reserve_size = n_cells_var *
                                                current_data.n_q_points[0];
              if (mapping_data_gen[0].jacobians.size() > 0)
                current_data.jacobians.reserve (reserve_size);
              if (mapping_data_gen[0].JxW_values.size() > 0)
                current_data.jacobians.reserve (reserve_size);
              if (mapping_data_gen[0].jacobians_grad_diag.size() > 0)
                current_data.jacobians_grad_diag.reserve (reserve_size);
              if (mapping_data_gen[0].jacobians_grad_upper.size() > 0)
                current_data.jacobians_grad_upper.reserve (reserve_size);
            }

          // we would like to put a Tensor<1,dim,VectorizedArray<Number> > as
          // key into the std::map, but std::map allocation does not align the
          // allocated memory correctly, so put it into a tensor of the
          // correct length instead
          FPArrayComparator<Number> comparator(jacobian_size);
          typedef Tensor<1,VectorizedArray<Number>::n_array_elements,Number> VEC_ARRAY;
          std::map<Tensor<1,dim,VEC_ARRAY>, unsigned int,
              FPArrayComparator<Number> > cartesians(comparator);
          std::map<Tensor<2,dim,VEC_ARRAY>, unsigned int,
              FPArrayComparator<Number> > affines(comparator);

          // loop over all cells
          for (unsigned int cell=0; cell<n_macro_cells; ++cell)
            {
              // GENERAL OUTLINE: First generate the data in format "number"
              // for vectorization_length cells, and then find the most
              // general type of cell for appropriate vectorized formats. then
              // fill this data in
              const unsigned int fe_index = active_fe_index.size() > 0 ?
                                            active_fe_index[cell] : 0;
              const unsigned int n_q_points = current_data.n_q_points[fe_index];
              if (fe_values[fe_index].get() == 0)
                fe_values[fe_index].reset
                (new FEValues<dim> (mapping, dummy_fe,
                                    current_data.quadrature[fe_index],
                                    update_flags_feval));
              FEValues<dim> &fe_val = *fe_values[fe_index];
              data.resize (n_q_points);

              // if the fe index has changed from the previous cell, set the
              // old cell type to invalid (otherwise, we might detect
              // similarity due to some cells further ahead)
              if (cell > 0 && active_fe_index.size() > 0 &&
                  active_fe_index[cell] != active_fe_index[cell-1])
                cell_t_prev[vectorization_length-1] = undefined;
              evaluate_on_cell (tria, &cells[cell*vectorization_length],
                                cell, my_q, cell_t_prev, cell_t, fe_val, data);

              // now reorder the data into vectorized types. if we are here
              // for the first time, we need to find out whether the Jacobian
              // allows for some simplification (Cartesian, affine) taking
              // vectorization_length cell together and we have to insert that
              // data into the respective fields. Also, we have to compress
              // different cell indicators into one structure.

              if (my_q == 0)
                {
                  // find the most general cell type (most general type is 2
                  // (general cell))
                  CellType most_general_type = cartesian;
                  for (unsigned int j=0; j<vectorization_length; ++j)
                    if (cell_t[j] > most_general_type)
                      most_general_type = cell_t[j];
                  AssertIndexRange (most_general_type, 3);
                  unsigned int insert_position = numbers::invalid_unsigned_int;

                  // Cartesian cell with diagonal Jacobian: only insert the
                  // diagonal of the inverse and the Jacobian determinant. We
                  // do this by using an std::map that collects pointers to
                  // all Cartesian Jacobians. We need a pointer in the
                  // std::map because it cannot store data based on
                  // VectorizedArray (alignment issue). We circumvent the
                  // problem by temporarily filling the next value into the
                  // cartesian_data field and, in case we did an insertion,
                  // the data is already in the correct place.
                  if (most_general_type == cartesian)
                    {
                      std::pair<Tensor<1,dim,VEC_ARRAY>,unsigned int> new_entry;
                      new_entry.second = cartesians.size();
                      for (unsigned int d=0; d<dim; ++d)
                        for (unsigned int v=0; v<VectorizedArray<Number>::n_array_elements; ++v)
                          new_entry.first[d][v] = data.const_jac[d][d][v];

                      std::pair<typename std::map<Tensor<1,dim,VEC_ARRAY>,
                          unsigned int, FPArrayComparator<Number> >::iterator,
                          bool> it = cartesians.insert(new_entry);
                      if (it.second == false)
                        insert_position = it.first->second;
                      else
                        insert_position = new_entry.second;
                    }

                  // Constant Jacobian case. same strategy as before, but with
                  // other data fields
                  else if (most_general_type == affine)
                    {
                      std::pair<Tensor<2,dim,VEC_ARRAY>,unsigned int> new_entry;
                      new_entry.second = affines.size();
                      for (unsigned int d=0; d<dim; ++d)
                        for (unsigned int e=0; e<dim; ++e)
                          for (unsigned int v=0; v<VectorizedArray<Number>::n_array_elements; ++v)
                            new_entry.first[d][e][v] = data.const_jac[d][e][v];

                      std::pair<typename std::map<Tensor<2,dim,VEC_ARRAY>,
                          unsigned int, FPArrayComparator<Number> >::iterator,
                          bool> it = affines.insert(new_entry);
                      if (it.second == false)
                        insert_position = it.first->second;
                      else
                        insert_position = new_entry.second;
                    }

                  // general cell case: first resize the data field to fit the
                  // new data. if we are here the first time, assume that
                  // there are many general cells to come, so reserve some
                  // memory in order to not have too many reallocations and
                  // memcpy's. The scheme used here involves at most one
                  // reallocation.
                  else
                    {
                      Assert (most_general_type == general, ExcInternalError());
                      insert_position = current_data.rowstart_jacobians.size();
                      if (current_data.rowstart_jacobians.size() == 0)
                        {
                          unsigned int reserve_size = (n_macro_cells-cell+1)/2;
                          current_data.rowstart_jacobians.reserve
                          (reserve_size);
                          reserve_size *= n_q_points;
                          current_data.jacobians.reserve (reserve_size);
                          if (update_flags & update_JxW_values)
                            current_data.JxW_values.reserve (reserve_size);
                          if (update_flags & update_jacobian_grads)
                            current_data.jacobians_grad_diag.reserve (reserve_size);
                          if (update_flags & update_jacobian_grads)
                            current_data.jacobians_grad_upper.reserve (reserve_size);
                        }
                    }

                  cell_type[cell] = ((insert_position << n_cell_type_bits) +
                                     (unsigned int)most_general_type);

                } // end if (my_q == 0)

              // general cell case: now go through all quadrature points and
              // collect the data. done for all different quadrature formulas,
              // so do it outside the above loop.
              if (get_cell_type(cell) == general)
                {
                  const unsigned int previous_size =
                    current_data.jacobians.size();
                  current_data.rowstart_jacobians.push_back (previous_size);
                  if (update_flags & update_JxW_values)
                    {
                      AssertDimension (previous_size,
                                       current_data.JxW_values.size());
                    }
                  if (update_flags & update_jacobian_grads)
                    {
                      AssertDimension (previous_size,
                                       current_data.jacobians_grad_diag.size());
                      AssertDimension (previous_size,
                                       current_data.jacobians_grad_upper.size());
                    }
                  for (unsigned int q=0; q<n_q_points; ++q)
                    {
                      Tensor<2,dim,VectorizedArray<Number> > &jac = data.general_jac[q];
                      Tensor<3,dim,VectorizedArray<Number> > &jacobian_grad = data.general_jac_grad[q];
                      for (unsigned int j=0; j<vectorization_length; ++j)
                        if (cell_t[j] == cartesian || cell_t[j] == affine)
                          {
                            for (unsigned int d=0; d<dim; ++d)
                              for (unsigned int e=0; e<dim; ++e)
                                {
                                  jac[d][e][j] = data.const_jac[d][e][j];
                                  for (unsigned int f=0; f<dim; ++f)
                                    jacobian_grad[d][e][f][j] = 0.;
                                }
                          }

                      const VectorizedArray<Number> det = determinant (jac);
                      current_data.jacobians.push_back (transpose(invert(jac)));
                      const Tensor<2,dim,VectorizedArray<Number> > &inv_jac = current_data.jacobians.back();

                      if (update_flags & update_JxW_values)
                        current_data.JxW_values.push_back
                        (det * current_data.quadrature_weights[fe_index][q]);

                      if (update_flags & update_jacobian_grads)
                        {
                          // for second derivatives on the real cell, need
                          // also the gradient of the inverse Jacobian J. This
                          // involves some calculus and is done
                          // vectorized. This is very cheap compared to what
                          // fe_values does (in early 2011). If L is the
                          // gradient of the jacobian on the unit cell, the
                          // gradient of the inverse is given by
                          // (multidimensional calculus) - J * (J * L) * J
                          // (the third J is because we need to transform the
                          // gradient L from the unit to the real cell, and
                          // then apply the inverse Jacobian). Compare this
                          // with 1D with j(x) = 1/k(phi(x)), where j = phi'
                          // is the inverse of the jacobian and k is the
                          // derivative of the jacobian on the unit cell. Then
                          // j' = phi' k'/k^2 = j k' j^2.

                          // compute: jac_grad = J*grad_unit(J^-1)
                          for (unsigned int d=0; d<dim; ++d)
                            for (unsigned int e=0; e<dim; ++e)
                              for (unsigned int f=0; f<dim; ++f)
                                {
                                  jac_grad[f][e][d] = (inv_jac[f][0] *
                                                       jacobian_grad[d][e][0]);
                                  for (unsigned int g=1; g<dim; ++g)
                                    jac_grad[f][e][d] += (inv_jac[f][g] *
                                                          jacobian_grad[d][e][g]);
                                }

                          // compute: transpose (-jac * jac_grad[d] * jac)
                          for (unsigned int d=0; d<dim; ++d)
                            for (unsigned int e=0; e<dim; ++e)
                              {
                                for (unsigned int f=0; f<dim; ++f)
                                  {
                                    tmp[f] = VectorizedArray<Number>();
                                    for (unsigned int g=0; g<dim; ++g)
                                      tmp[f] -= jac_grad[d][f][g] * inv_jac[g][e];
                                  }

                                // needed for non-diagonal part of Jacobian
                                // grad
                                for (unsigned int f=0; f<dim; ++f)
                                  {
                                    grad_jac_inv[f][d][e] = inv_jac[f][0] * tmp[0];
                                    for (unsigned int g=1; g<dim; ++g)
                                      grad_jac_inv[f][d][e] += inv_jac[f][g] * tmp[g];
                                  }
                              }

                          {
                            VectorizedArray<Number> grad_diag[dim][dim];
                            for (unsigned int d=0; d<dim; ++d)
                              for (unsigned int e=0; e<dim; ++e)
                                grad_diag[d][e] = grad_jac_inv[d][d][e];
                            current_data.jacobians_grad_diag.push_back
                            (Tensor<2,dim,VectorizedArray<Number> >(grad_diag));
                          }

                          // sets upper-diagonal part of Jacobian
                          Tensor<1,(dim>1?dim*(dim-1)/2:1),Tensor<1,dim,VectorizedArray<Number> > > grad_upper;
                          for (unsigned int d=0, count=0; d<dim; ++d)
                            for (unsigned int e=d+1; e<dim; ++e, ++count)
                              for (unsigned int f=0; f<dim; ++f)
                                grad_upper[count][f] = grad_jac_inv[d][e][f];
                          current_data.jacobians_grad_upper.push_back(grad_upper);
                        }
                    }
                }

              if (update_flags & update_quadrature_points)
                {
                  // eventually we turn to the quadrature points that we can
                  // compress in case we have Cartesian cells. we also need to
                  // reorder them into arrays of vectorized data types.  first
                  // go through the cells and find out how much memory we need
                  // to allocate for the quadrature points. We store
                  // n_q_points for all cells but Cartesian cells. For
                  // Cartesian cells, only need to store the values on a
                  // diagonal through the cell (n_q_points_1d). This will give
                  // (with some little indexing) the location of all
                  // quadrature points.
                  const unsigned int old_size =
                    current_data.quadrature_points.size();
                  current_data.rowstart_q_points[cell] = old_size;

                  Tensor<1,dim,VectorizedArray<Number> > quad_point;

                  if (get_cell_type(cell) == cartesian)
                    {
                      current_data.quadrature_points.resize (old_size+
                                                             n_q_points_1d[fe_index]);
                      for (unsigned int q=0; q<n_q_points_1d[fe_index]; ++q)
                        for (unsigned int d=0; d<dim; ++d)
                          current_data.quadrature_points[old_size+q][d] =
                            data.quadrature_points[q*step_size_cartesian[fe_index]][d];
                    }
                  else
                    {
                      current_data.quadrature_points.resize (old_size + n_q_points);
                      for (unsigned int q=0; q<n_q_points; ++q)
                        for (unsigned int d=0; d<dim; ++d)
                          current_data.quadrature_points[old_size+q][d] =
                            data.quadrature_points[q][d];
                    }
                }
            } // end for ( cell < n_macro_cells )
          current_data.rowstart_jacobians.push_back
          (current_data.jacobians.size());
          current_data.rowstart_q_points[n_macro_cells] =
            current_data.quadrature_points.size();

          // finally, fill the accumulated data for Cartesian and affine cells
          //  into cartesian_data and affine_data, invert and transpose the
          //  Jacobians, and compute the JxW value.
          if (my_q == 0)
            {
              cartesian_data.resize(cartesians.size());
              for (typename std::map<Tensor<1,dim,VEC_ARRAY>,
                   unsigned int, FPArrayComparator<Number> >::iterator
                   it = cartesians.begin(); it != cartesians.end(); ++it)
                {
                  VectorizedArray<Number> det = make_vectorized_array<Number>(1.);
                  for (unsigned int d=0; d<dim; ++d)
                    {
                      VectorizedArray<Number> jac_d;
                      for (unsigned int v=0;
                           v<VectorizedArray<Number>::n_array_elements; ++v)
                        jac_d[v] = it->first[d][v];
                      cartesian_data[it->second].first[d] = 1./jac_d;
                      det *= jac_d;
                    }
                  cartesian_data[it->second].second = det;
                }
              affine_data.resize(affines.size());
              for (typename std::map<Tensor<2,dim,VEC_ARRAY>,
                   unsigned int, FPArrayComparator<Number> >::iterator
                   it = affines.begin(); it != affines.end(); ++it)
                {
                  Tensor<2,dim,VectorizedArray<Number> > jac;
                  for (unsigned int d=0; d<dim; ++d)
                    for (unsigned int e=0; e<dim; ++e)
                      for (unsigned int v=0;
                           v<VectorizedArray<Number>::n_array_elements; ++v)
                        jac[d][e][v] = it->first[d][e][v];

                  affine_data[it->second].second = determinant(jac);
                  affine_data[it->second].first = transpose(invert(jac));
                }
            }
        }
    }



    template<int dim, typename Number>
    void
    MappingInfo<dim,Number>::evaluate_on_cell (const dealii::Triangulation<dim> &tria,
                                               const std::pair<unsigned int,unsigned int> *cells,
                                               const unsigned int  cell,
                                               const unsigned int  my_q,
                                               CellType (&cell_t_prev)[VectorizedArray<Number>::n_array_elements],
                                               CellType (&cell_t)[VectorizedArray<Number>::n_array_elements],
                                               FEValues<dim,dim> &fe_val,
                                               CellData          &data) const
    {
      const unsigned int vectorization_length =
        VectorizedArray<Number>::n_array_elements;
      const unsigned int n_q_points = fe_val.n_quadrature_points;
      const UpdateFlags update_flags = fe_val.get_update_flags();

      // this should be the same value as used in HashValue::scaling (but we
      // not have that field here)
      const double zero_tolerance_double = data.jac_size *
                                           std::numeric_limits<double>::epsilon() * 1024.;
      for (unsigned int j=0; j<vectorization_length; ++j)
        {
          typename dealii::Triangulation<dim>::cell_iterator
          cell_it (&tria, cells[j].first, cells[j].second);
          fe_val.reinit(cell_it);
          cell_t[j] = undefined;

          // extract quadrature points and store them temporarily. if we have
          // Cartesian cells, we can compress the indices
          if (update_flags & update_quadrature_points)
            for (unsigned int q=0; q<n_q_points; ++q)
              {
                const Point<dim> &point = fe_val.quadrature_point(q);
                for (unsigned int d=0; d<dim; ++d)
                  data.quadrature_points[q][d][j] = point[d];
              }

          // if this is not the first quadrature formula and we already have
          // determined that this cell is either Cartesian or with constant
          // Jacobian, we have nothing more to do.
          if (my_q > 0 && (get_cell_type(cell) == cartesian
                           || get_cell_type(cell) == affine) )
            continue;

          // first round: if the transformation is detected to be the same as
          // on the old cell, we only need to copy over the data.
          if (fe_val.get_cell_similarity() == CellSimilarity::translation
              &&
              my_q == 0)
            {
              if (j==0)
                {
                  Assert (cell>0, ExcInternalError());
                  cell_t[j] = cell_t_prev[vectorization_length-1];
                }
              else
                cell_t[j] = cell_t[j-1];
            }

          const DerivativeForm<1,dim,dim> &jac_0 = fe_val.jacobian(0);

          if (my_q == 0)
            {
              // check whether the Jacobian is constant on this cell the first
              // time we come around here
              if (cell_t[j] == undefined)
                {
                  bool jacobian_constant = true;
                  for (unsigned int q=1; q<n_q_points; ++q)
                    {
                      const DerivativeForm<1,dim,dim> &jac = fe_val.jacobian(q);
                      for (unsigned int d=0; d<dim; ++d)
                        for (unsigned int e=0; e<dim; ++e)
                          if (std::fabs(jac_0[d][e]-jac[d][e]) >
                              zero_tolerance_double)
                            jacobian_constant = false;
                      if (jacobian_constant == false)
                        break;
                    }

                  // check whether the Jacobian is diagonal to machine
                  // accuracy
                  bool cell_cartesian = jacobian_constant;
                  for (unsigned int d=0; d<dim; ++d)
                    for (unsigned int e=0; e<dim; ++e)
                      if (d!=e)
                        if (std::fabs(jac_0[d][e]) >
                            zero_tolerance_double)
                          {
                            cell_cartesian=false;
                            break;
                          }

                  // in case we have only one quadrature point, we can have
                  // non-constant Jacobians, but we cannot detect it by
                  // comparison from one quadrature point to the next: in that
                  // case, need to look at second derivatives and see whether
                  // there are some non-zero entries (this is necessary since
                  // we determine the constness of the Jacobian for the first
                  // quadrature formula and might not look at them any more
                  // for the second, third quadrature formula). in any case,
                  // the flag update_jacobian_grads will be set in that case
                  if (cell_cartesian == false && n_q_points == 1 &&
                      update_flags & update_jacobian_grads)
                    {
                      const DerivativeForm<1,dim,dim> &jac = fe_val.jacobian(0);
                      const DerivativeForm<2,dim,dim> &jacobian_grad =
                        fe_val.jacobian_grad(0);
                      for (unsigned int d=0; d<dim; ++d)
                        for (unsigned int e=0; e<dim; ++e)
                          for (unsigned int f=0; f<dim; ++f)
                            {
                              double jac_grad_comp = (jac[f][0] *
                                                      jacobian_grad[d][e][0]);
                              for (unsigned int g=1; g<dim; ++g)
                                jac_grad_comp += (jac[f][g] *
                                                  jacobian_grad[d][e][g]);
                              if (std::fabs(jac_grad_comp) >
                                  zero_tolerance_double)
                                jacobian_constant = false;
                            }
                    }
                  // set cell type
                  if (cell_cartesian == true)
                    cell_t[j] = cartesian;
                  else if (jacobian_constant == true)
                    cell_t[j] = affine;
                  else
                    cell_t[j] = general;
                }

              // Cartesian cell
              if (cell_t[j] == cartesian)
                {
                  // set Jacobian into diagonal and clear off-diagonal part
                  for (unsigned int d=0; d<dim; ++d)
                    {
                      data.const_jac[d][d][j] = jac_0[d][d];
                      for (unsigned int e=d+1; e<dim; ++e)
                        {
                          data.const_jac[d][e][j] = 0.;
                          data.const_jac[e][d][j] = 0.;
                        }
                    }
                  continue;
                }

              // cell with affine mapping
              else if (cell_t[j] == affine)
                {
                  // compress out very small values
                  for (unsigned int d=0; d<dim; ++d)
                    for (unsigned int e=0; e<dim; ++e)
                      data.const_jac[d][e][j] =
                        std::fabs(jac_0[d][e]) < zero_tolerance_double ?
                        0 : jac_0[d][e];
                  continue;
                }
            }

          // general cell case

          // go through all quadrature points and fill in the data into the
          // temporary data structures with slots for the vectorized data
          // types
          for (unsigned int q=0; q<n_q_points; ++q)
            {

              // compress out very small numbers which are only noise. Then it
              // is cleaner to use zero straight away (though it does not save
              // any memory)
              const DerivativeForm<1,dim,dim> &jac = fe_val.jacobian(q);
              for (unsigned int d=0; d<dim; ++d)
                for (unsigned int e=0; e<dim; ++e)
                  data.general_jac[q][d][e][j] =
                    std::fabs(jac[d][e]) < zero_tolerance_double ? 0. : jac[d][e];

              // need to do some calculus based on the gradient of the
              // Jacobian, in order to find the gradient of the inverse
              // Jacobian which is needed in user code. however, we would like
              // to perform that on vectorized data types instead of doubles
              // or floats. to this end, copy the gradients first
              if (update_flags & update_jacobian_grads)
                {
                  const DerivativeForm<2,dim,dim> &jacobian_grad = fe_val.jacobian_grad(q);
                  for (unsigned int d=0; d<dim; ++d)
                    for (unsigned int e=0; e<dim; ++e)
                      for (unsigned int f=0; f<dim; ++f)
                        data.general_jac_grad[q][d][e][f][j] = jacobian_grad[d][e][f];
                }
            }
        } // end loop over all entries in vectorization (vectorization_length
      // cells)

      // set information for next cell
      for (unsigned int j=0; j<vectorization_length; ++j)
        cell_t_prev[j] = cell_t[j];
    }


    template <int dim, typename Number>
    MappingInfo<dim,Number>::CellData::CellData (const double jac_size_in)
      :
      jac_size (jac_size_in)
    {}



    template <int dim, typename Number>
    void
    MappingInfo<dim,Number>::CellData::resize (const unsigned int size)
    {
      if (general_jac.size() != size)
        {
          quadrature_points.resize(size);
          general_jac.resize(size);
          general_jac_grad.resize(size);
        }
    }



    template <int dim, typename Number>
    std::size_t MappingInfo<dim,Number>::MappingInfoDependent::memory_consumption() const
    {
      std::size_t
      memory = MemoryConsumption::memory_consumption (jacobians);
      memory += MemoryConsumption::memory_consumption (JxW_values);
      memory += MemoryConsumption::memory_consumption (jacobians_grad_diag);
      memory += MemoryConsumption::memory_consumption (jacobians_grad_upper);
      memory += MemoryConsumption::memory_consumption (rowstart_q_points);
      memory += MemoryConsumption::memory_consumption (quadrature_points);
      memory += MemoryConsumption::memory_consumption (quadrature);
      memory += MemoryConsumption::memory_consumption (face_quadrature);
      memory += MemoryConsumption::memory_consumption (quadrature_weights);
      memory += MemoryConsumption::memory_consumption (n_q_points);
      memory += MemoryConsumption::memory_consumption (n_q_points_face);
      memory += MemoryConsumption::memory_consumption (quad_index_conversion);
      return memory;
    }



    template <int dim, typename Number>
    std::size_t MappingInfo<dim,Number>::memory_consumption() const
    {
      std::size_t
      memory= MemoryConsumption::memory_consumption (mapping_data_gen);
      memory += MemoryConsumption::memory_consumption (affine_data);
      memory += MemoryConsumption::memory_consumption (cartesian_data);
      memory += MemoryConsumption::memory_consumption (cell_type);
      memory += sizeof (this);
      return memory;
    }



    template <int dim, typename Number>
    template <typename STREAM>
    void MappingInfo<dim,Number>::MappingInfoDependent::print_memory_consumption
    (STREAM         &out,
     const SizeInfo &size_info) const
    {
      // print_memory_statistics involves global communication, so we can
      // disable the check here only if no processor has any such data
#ifdef DEAL_II_WITH_MPI
      unsigned int general_size_glob = 0, general_size_loc = jacobians.size();
      MPI_Allreduce (&general_size_loc, &general_size_glob, 1, MPI_UNSIGNED,
                     MPI_MAX, size_info.communicator);
#else
      unsigned int general_size_glob = jacobians.size();
#endif
      if (general_size_glob > 0)
        {
          out << "      Memory Jacobian data:          ";
          size_info.print_memory_statistics
          (out, MemoryConsumption::memory_consumption (jacobians) +
           MemoryConsumption::memory_consumption (JxW_values));
          out << "      Memory second derivative data: ";
          size_info.print_memory_statistics
          (out,MemoryConsumption::memory_consumption (jacobians_grad_diag) +
           MemoryConsumption::memory_consumption (jacobians_grad_upper));
        }

#ifdef DEAL_II_WITH_MPI
      unsigned int quad_size_glob = 0, quad_size_loc = quadrature_points.size();
      MPI_Allreduce (&quad_size_loc, &quad_size_glob, 1, MPI_UNSIGNED,
                     MPI_MAX, size_info.communicator);
#else
      unsigned int quad_size_glob = quadrature_points.size();
#endif
      if (quad_size_glob > 0)
        {
          out << "      Memory quadrature points:      ";
          size_info.print_memory_statistics
          (out, MemoryConsumption::memory_consumption (rowstart_q_points) +
           MemoryConsumption::memory_consumption (quadrature_points));
        }
    }



    template <int dim, typename Number>
    template <typename STREAM>
    void MappingInfo<dim,Number>::print_memory_consumption(STREAM &out,
                                                           const SizeInfo &size_info) const
    {
      out << "    Cell types:                      ";
      size_info.print_memory_statistics
      (out, MemoryConsumption::memory_consumption (cell_type));
      out << "    Memory transformations compr:    ";
      size_info.print_memory_statistics
      (out, MemoryConsumption::memory_consumption (affine_data) +
       MemoryConsumption::memory_consumption (cartesian_data));
      for (unsigned int j=0; j<mapping_data_gen.size(); ++j)
        {
          out << "    Data component " << j << std::endl;
          mapping_data_gen[j].print_memory_consumption(out, size_info);
        }
    }

  } // end of namespace MatrixFreeFunctions
} // end of namespace internal


DEAL_II_NAMESPACE_CLOSE