This file is indexed.

/usr/include/dune/grid-glue/merging/overlappingmerge.cc is in libdune-grid-glue-dev 2.4.0-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:

#ifndef DUNE_GRIDGLUE_OVERLAPPINGMERGE_CC
#define DUNE_GRIDGLUE_OVERLAPPINGMERGE_CC
//#include <algorithm>

namespace Dune {
namespace GridGlue {

template<int dim1, int dim2, int dimworld, typename T>
bool OverlappingMerge<dim1,dim2,dimworld, T>::inPlane(std::vector<FieldVector<T,dimworld> >& points) {

    T eps = 1e-8;

    assert(dim1 == 3 && dim2 == 3 && dimworld == 3);
    assert(points.size() == 4);

    FieldVector<T,dimworld> v1 = points[1]-points[0];
    FieldVector<T,dimworld> v2 = points[2]-points[0];
    FieldVector<T,dimworld> v3 = points[3]-points[0];

    FieldVector<T,dimworld> v1xv2;
    v1xv2[0] = v1[1]*v2[2] - v1[2]*v2[1];
    v1xv2[1] = v1[2]*v2[0] - v1[0]*v2[2];
    v1xv2[2] = v1[0]*v2[1] - v1[1]*v2[0];

    return (std::abs(v3.dot(v1xv2)) < eps);
}

template<int dim1, int dim2, int dimworld, typename T>
void OverlappingMerge<dim1,dim2,dimworld, T>::computeIntersections(const Dune::GeometryType& grid1ElementType,
                                               const std::vector<Dune::FieldVector<T,dimworld> >& grid1ElementCorners,
                                               std::bitset<(1<<dim1)>& neighborIntersects1,
                                               unsigned int grid1Index,
                                               const Dune::GeometryType& grid2ElementType,
                                               const std::vector<Dune::FieldVector<T,dimworld> >& grid2ElementCorners,
                                               std::bitset<(1<<dim2)>& neighborIntersects2,
                                               unsigned int grid2Index,
                                               std::vector<RemoteSimplicialIntersection>& intersections)
{
    using std::min;

    this->counter++;
    intersections.clear();

    typedef SimplexMethod<dimworld,dim1,dim2,T> CM;

#ifndef NDEBUG
#  if DUNE_VERSION_NEWER(DUNE_GEOMETRY,2,3)
    const Dune::ReferenceElement<T,dim1>& refElement1 = Dune::ReferenceElements<T,dim1>::general(grid1ElementType);
    const Dune::ReferenceElement<T,dim2>& refElement2 = Dune::ReferenceElements<T,dim2>::general(grid2ElementType);
#  else
    const Dune::GenericReferenceElement<T,dim1>& refElement1 = Dune::GenericReferenceElements<T,dim1>::general(grid1ElementType);
    const Dune::GenericReferenceElement<T,dim2>& refElement2 = Dune::GenericReferenceElements<T,dim2>::general(grid2ElementType);
#  endif

    // A few consistency checks
    assert((unsigned int)(refElement1.size(dim1)) == grid1ElementCorners.size());
    assert((unsigned int)(refElement2.size(dim2)) == grid2ElementCorners.size());
#endif

    // Make generic geometries representing the grid1- and grid2 element.
    // this eases computation of local coordinates.
    typedef CachedMultiLinearGeometry<T,dim1,dimworld> Geometry1;
    typedef CachedMultiLinearGeometry<T,dim2,dimworld> Geometry2;

    Geometry1 grid1Geometry(grid1ElementType, grid1ElementCorners);
    Geometry2 grid2Geometry(grid2ElementType, grid2ElementCorners);

    // Dirty workaround for the intersection computation scaling problem (part 1/2)
    std::vector<Dune::FieldVector<T,dimworld> > scaledGrid1ElementCorners(grid1ElementCorners.size());
    std::vector<Dune::FieldVector<T,dimworld> > scaledGrid2ElementCorners(grid2ElementCorners.size());

    // the scaling parameter is the length minimum of the lengths of the first edge in the grid1 geometry
    // and the first edge in the grid2 geometry
    T scaling = min((grid1ElementCorners[0] - grid1ElementCorners[1]).two_norm(),
            (grid2ElementCorners[0] - grid2ElementCorners[1]).two_norm());

    // scale the coordinates according to scaling parameter
    for (unsigned int i = 0; i < grid1ElementCorners.size(); ++i) {
        scaledGrid1ElementCorners[i] = grid1ElementCorners[i];
        scaledGrid1ElementCorners[i] *= (1.0/scaling);
    }
    for (unsigned int i = 0; i < grid2ElementCorners.size(); ++i) {
        scaledGrid2ElementCorners[i] = grid2ElementCorners[i];
        scaledGrid2ElementCorners[i] *= (1.0/scaling);
    }

    // get size_type for all the vectors we are using
    typedef typename std::vector<Empty>::size_type size_type;

    const int dimis = dim1 < dim2 ? dim1 : dim2;
    const size_type n_intersectionnodes = dimis+1;
    size_type i;

    std::vector<FieldVector<T,dimworld> >  scaledP(0), P(0);
    std::vector<std::vector<int> >          H,SX(1<<dim1),SY(1<<dim2);
    FieldVector<T,dimworld>                centroid;
    // local grid1 coordinates of the intersections
    std::vector<FieldVector<T,dim1> > g1local(n_intersectionnodes);
    // local grid2 coordinates of the intersections
    std::vector<FieldVector<T,dim2> > g2local(n_intersectionnodes);

    // compute the intersection nodes
    IntersectionComputation<CM>::computeIntersection(scaledGrid1ElementCorners,
                                                     scaledGrid2ElementCorners,
                                                     SX,SY,scaledP);

    // Dirty workaround - rescale the result (part 2/2)
    P.resize(scaledP.size());
    for (unsigned int i = 0; i < scaledP.size(); ++i) {
        P[i] = scaledP[i];
        P[i] *= scaling;
    }

    for (size_type i = 0; i < neighborIntersects1.size(); ++i) {
        if (i < SX.size())
            neighborIntersects1[i] = (SX[i].size() > 0);
        else
            neighborIntersects1[i] = false;
    }
    for (size_type i = 0; i < neighborIntersects2.size(); ++i) {
        if (i < SY.size())
            neighborIntersects2[i] = (SY[i].size() > 0);
        else
            neighborIntersects2[i] = false;
    }

    // P is an simplex of dimension dimis
    if (P.size() == n_intersectionnodes) {

        for (i = 0; i < n_intersectionnodes; ++i) {
            g1local[i] = grid1Geometry.local(P[i]);
            g2local[i] = grid2Geometry.local(P[i]);
        }

        intersections.push_back(RemoteSimplicialIntersection(grid1Index, grid2Index));
        for (i = 0; i < n_intersectionnodes; ++i) {
            intersections.back().grid1Local_[0][i] = g1local[i];
            intersections.back().grid2Local_[0][i] = g2local[i];
        }

    } else if (P.size() > n_intersectionnodes) {  // P is a union of simplices of dimension dimis

        assert(dimis != 1);
        std::vector<FieldVector<T,dimworld> > global(n_intersectionnodes);

        // Compute the centroid
        centroid=0;
        for (size_type i=0; i < P.size(); i++)
            centroid += P[i] ;
        centroid /= static_cast<T>(P.size()) ;

        // order the points and get intersection face indices
        H.clear() ;
        IntersectionComputation<CM>::template orderPoints<dimis,dimworld>(centroid,SX,SY,P,H);

        //  Loop over all intersection elements
        for (size_type i=0; i < H.size(); i++) {
            int hs = H[i].size(); // number of nodes of the intersection

            // if the intersection element is not degenerated
            if (hs==dimis) {

                // create the intersection geometry
                for ( size_type j=0 ; j < dimis; ++j) {
                    global[j]= P[H[i][j]]; // get the intersection face
                }

                // intersection face + centroid = new element
                global[dimis]=centroid;

                // create local representation of the intersection
                for (size_type j = 0; j < n_intersectionnodes; ++j) {
                    g1local[j] = grid1Geometry.local(global[j]);
                    g2local[j] = grid2Geometry.local(global[j]);
                }

                intersections.push_back(RemoteSimplicialIntersection(grid1Index,grid2Index));
                for (size_type j = 0; j < n_intersectionnodes; ++j) {
                    intersections.back().grid1Local_[0][j] = g1local[j];
                    intersections.back().grid2Local_[0][j] = g2local[j];
                }
            }
        }
    }
}

} /* namespace Dune::GridGlue */
} /* namespace Dune */

#endif // DUNE_GRIDGLUE_OVERLAPPINGMERGE_CC