This file is indexed.

/usr/include/flint/flintxx/vector.h is in libflint-dev 2.5.2-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
/*=============================================================================

    This file is part of FLINT.

    FLINT is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation; either version 2 of the License, or
    (at your option) any later version.

    FLINT is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.

    You should have received a copy of the GNU General Public License
    along with FLINT; if not, write to the Free Software
    Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301 USA

=============================================================================*/
/******************************************************************************

    Copyright (C) 2013 Tom Bachmann

******************************************************************************/

// Sketch of a generic vector class.

#ifndef CXX_VECTOR_H
#define CXX_VECTOR_H

#include <string>
#include <sstream>

#include "expression.h"
#include "evaluation_tools.h"
#include "ltuple.h"
#include "mp.h"

namespace flint {
FLINT_DEFINE_BINOP(vector_at)

template<class Underlying_traits, class Operation, class Data>
class vector_expression;

namespace detail {
template<class Traits>
struct vector_wrapper : derived_wrapper2<vector_expression, Traits> { };

template<class Idx, class Operation, class Expr, class Traits>
struct vector_at_traits
{
    typedef FLINT_BINOP_ENABLE_RETTYPE(vector_at, Expr, Idx) ref_t;
    typedef ref_t cref_t;
    static ref_t at(const Expr& v, Idx i)
        {return vector_at(v, i);}
};
template<class Idx, class Expr, class Traits>
struct vector_at_traits<Idx, operations::immediate, Expr, Traits>
    : Traits { };
}

template<class Underlying_traits, class Operation, class Data>
class vector_expression
    : public expression<detail::vector_wrapper<Underlying_traits>, Operation, Data>
{
public:
    typedef expression<detail::vector_wrapper<Underlying_traits>,
                Operation, Data> base_t;
    typedef typename Underlying_traits::ref_t ref_t;
    typedef typename Underlying_traits::cref_t cref_t;
    typedef typename Underlying_traits::idx_t idx_t;
    typedef typename Underlying_traits::underlying_t underlying_t;
    typedef typename Underlying_traits::arrayref_t arrayref_t;
    typedef typename Underlying_traits::arraysrcref_t arraysrcref_t;

    vector_expression() {}

    template<class T>
    explicit vector_expression(const T& t) : base_t(t) {}
    template<class T, class U>
    vector_expression(const T& t, const U& u) : base_t(t, u) {}
    template<class T, class U, class V>
    vector_expression(const T& t, const U& u, const V& v)
        : base_t(t, u, v) {}

    template<class T>
    vector_expression& operator=(const T& t)
    {
        this->set(t);
        return *this;
    }

    template<class Idx>
    typename detail::vector_at_traits<Idx, Operation, vector_expression,
                 Underlying_traits>::ref_t operator[](Idx idx)
    {
        return detail::vector_at_traits<Idx, Operation, vector_expression,
                 Underlying_traits>::at(*this, idx);
    }
    template<class Idx>
    typename detail::vector_at_traits<Idx, Operation, vector_expression,
                 Underlying_traits>::cref_t operator[](Idx idx) const
    {
        return detail::vector_at_traits<Idx, Operation, vector_expression,
                 Underlying_traits>::at(*this, idx);
    }

    idx_t size() const {return Underlying_traits::size(*this);}

    arrayref_t _array() {return Underlying_traits::array(*this);}
    arraysrcref_t _array() const {return Underlying_traits::array(*this);}

    typename base_t::evaluated_t create_temporary() const
    {
        return Underlying_traits::create_temporary(*this);
    }

protected:
    explicit vector_expression(const Data& d) : base_t(d) {}

    template<class D, class O, class Da>
    friend class expression;
};

namespace vectors {
// Similar to matrices, the size of a vector expression has to be known in
// order to allocate temporary objects. In this case, the generic
// implementation looks for any vector immediate subexpression and returs its
// size. This makes sense since mixing vectors of differing sizes usually makes
// no sense.
// Thus specialisation is usually only necessary in constructor-like operations,
// which do not involve vector immediates.
template<class Operation>
struct outsize
{
    template<class Expr>
    static unsigned get(const Expr& e)
    {
        return tools::find_subexpr_T<typename Expr::evaluated_t>(e)._data().size;
    }
};

// Hack for ltuple_get, similar to the matrices case.
template<unsigned n>
struct outsize<operations::ltuple_get_op<n> >
{
    template<class Expr>
    static unsigned get(const Expr& e)
    {
        return outsize<typename Expr::data_t::head_t::operation_t>::get(
                e._data().head);
    }
};
}

namespace detail {
template<class T, class Ref, class Cref, class ArrayT>
struct basic_vector_traits
{
    typedef unsigned idx_t;
    typedef Ref ref_t;
    typedef const Cref cref_t;
    typedef T underlying_t;
    typedef ArrayT* arrayref_t;
    typedef const ArrayT* arraysrcref_t;

    template<class Expr>
    static ref_t at(Expr& e, unsigned i)
    {
        return e.evaluate()._data().array[i];
    }

    template<class Expr>
    static cref_t at(const Expr& e, unsigned i)
    {
        return e.evaluate()._data().array[i];
    }

    template<class Expr>
    static arrayref_t array(Expr& e)
    {
        return e.evaluate()._data().array;
    }

    template<class Expr>
    static arraysrcref_t array(const Expr& e)
    {
        return e.evaluate()._data().array;
    }
};
template<class T, class Ref = T&, class Cref = const T&, class ArrayT = T>
struct rtfixed_size_traits
    : basic_vector_traits<T, Ref, Cref, ArrayT>
{
    template<class Expr>
    static unsigned size(const Expr& e)
    {
        return vectors::outsize<typename Expr::operation_t>::get(e);
    }

    template<class Expr>
    static typename Expr::evaluated_t create_temporary(const Expr& e)
    {
        return typename Expr::evaluated_t(e.size());
    }
};
template<class T, class Ref = T&, class Cref = const T&, class ArrayT = T>
struct fixed_size_traits
    : basic_vector_traits<T, Ref, Cref, ArrayT>
{
    template<class Expr>
    static unsigned size(const Expr& e)
    {
        return Expr::evaluated_t::data_t::size;
    }

    template<class Expr>
    static typename Expr::evaluated_t create_temporary(const Expr& e)
    {
        return typename Expr::evaluated_t();
    }
};

template<class T, class Size, class Ref, class Cref, class ArrayT>
struct wrapped_vector_traits
    : rtfixed_size_traits<T, Ref, Cref, ArrayT>
{
    typedef Size idx_t;

    template<class Expr>
    static Ref at(Expr& e, idx_t i)
    {
        return e.evaluate()._data().at(i);
    }

    template<class Expr>
    static Cref at(const Expr& e, idx_t i)
    {
        return e.evaluate()._data().at(i);
    }
};

template<class T>
struct rtfixed_size_data
{
    const unsigned size;
    T* array;

    rtfixed_size_data(unsigned n)
        : size(n), array(new T[n]) {}
    ~rtfixed_size_data() {delete[] array;}

    rtfixed_size_data(const rtfixed_size_data& o)
        : size(o.size)
    {
        // TODO this is very non-optimal ... (?)
        array = new T[size];
        for(unsigned i = 0;i < size;++i)
        {
            array[i] = o.array[i];
        }
    }
};
template<class T, unsigned n>
struct fixed_size_data
{
    static const unsigned size = n;
    T array[n];
};
} // detail

template<class T>
struct make_vector
{
    typedef vector_expression<detail::rtfixed_size_traits<T>,
                operations::immediate, detail::rtfixed_size_data<T> > type;
};
template<class T, unsigned n>
struct make_vector_n
{
    typedef vector_expression<detail::fixed_size_traits<T>,
                operations::immediate, detail::fixed_size_data<T, n> > type;
};

template<class Expr>
struct enable_vector_rules : mp::false_ { };

template<class Traits, class Data>
struct enable_vector_rules<
    vector_expression<Traits, operations::immediate, Data> >
    : mp::true_ { };

namespace rules {
// temporary allocation inside ltuples
template<class Operation, class Data, class U,
    class Traits, class Op, class Da>
struct instantiate_temporaries<ltuple_expression<U, Operation, Data>,
    vector_expression<Traits, Op, Da> >
{
    typedef ltuple_expression<U, Operation, Data> Expr;
    typedef vector_expression<Traits, Op, Da> T;
    static T get(const Expr& e)
    {
        return T(vectors::outsize<Operation>::get(e));
    }
};

template<class Traits, class Data, class T>
struct binary_expression<vector_expression<Traits, operations::immediate, Data>,
    operations::vector_at_op, T>
{
    typedef typename Traits::underlying_t return_t;
    template<class V>
    static void doit(V& to,
            const vector_expression<Traits, operations::immediate, Data>& v,
            T i)
    {
        to = Traits::at(v, i);
    }
};


template<class Expr>
struct to_string<Expr, typename mp::enable_if<mp::and_<
    enable_vector_rules<Expr>,
    traits::is_implemented<to_string<typename Expr::underlying_t> > > >::type>
{
    static std::string get(const Expr& e, int base)
    {
        // TODO inefficient
        std::string res = "(";
        for(typename Expr::idx_t i = 0;i < e.size();++i)
        {
            res += e[i].to_string();
            if(i != e.size() - 1)
                res += ", ";
        }
        res += ")";
        return res;
    }
};

template<class Expr>
struct equals<Expr, Expr,
    typename mp::enable_if<enable_vector_rules<Expr> >::type>
{
    static bool get(const Expr& e1, const Expr& e2)
    {
        if(e1.size() != e2.size())
            return false;
        for(typename Expr::idx_t i = 0;i < e1.size();++i)
            if(e1[i] != e2[i])
                return false;
        return true;
    }
};

namespace rvdetail {
template<class Tuple>
struct translate_data;

template<class Expr, class enable = void>
struct translate_expr
{
    typedef translate_data<typename Expr::data_t> trdata_t;
    typedef typename Expr::underlying_t ul_t;
    typedef typename ul_t::template make_helper<
        typename Expr::operation_t, typename trdata_t::type> make_helper;
    typedef typename make_helper::type type;

    template<class Idx>
    static type make(const Expr& e, Idx idx)
    {
        return make_helper::make(trdata_t::make(e._data(), idx));
    }
};

template<class Expr>
struct translate_expr<Expr,
    typename mp::enable_if<traits::is_immediate<Expr> >::type>
{
    typedef typename Expr::cref_t type;

    template<class Idx>
    static type make(const Expr& e, Idx idx)
    {
        return e[idx];
    }
};

template<class Head, class Tail>
struct translate_data<tuple<Head, Tail> >
{
    typedef translate_expr<typename traits::basetype<Head>::type> trexpr;
    typedef translate_data<Tail> trtail;
    typedef tuple<typename trexpr::type, typename trtail::type> type;

    template<class Idx>
    static type make(const tuple<Head, Tail>& e, Idx idx)
    {
        return type(trexpr::make(e.head, idx), trtail::make(e.tail, idx));
    }
};
template<>
struct translate_data<empty_tuple>
{
    typedef empty_tuple type;
    template<class Idx>
    static type make(empty_tuple, Idx) {return empty_tuple();}
};

template<class Data, class Enable = void>
struct enable_evaluation : mp::false_ {typedef void vector_t;};

template<class Data>
struct enable_evaluation<Data,
    typename mp::enable_if<traits::is_expression<
        typename traits::basetype<Data>::type> >::type>
    : enable_vector_rules<typename traits::basetype<Data>::type::evaluated_t>
{
    typedef typename traits::basetype<Data>::type::evaluated_t vector_t;
};
template<class Head, class Tail>
struct enable_evaluation<tuple<Head, Tail> >
    : mp::and_<enable_evaluation<Head>, enable_evaluation<Tail> >
{
    typedef typename enable_evaluation<Head>::vector_t vector_t;
};
template<>
struct enable_evaluation<empty_tuple>
    : mp::true_ { };
} //rvdetail

// TODO this is a bit greedy ..
template<class Op, class Data, bool result_is_temporary>
struct evaluation<Op, Data, result_is_temporary, 1,
    typename mp::enable_if<rvdetail::enable_evaluation<Data> >::type>
{
    typedef rvdetail::translate_data<Data> translator;
    typedef typename translator::type trdata_t;
    typedef typename mp::find_evaluation<
        Op, trdata_t, result_is_temporary>::type rule_t;
    typedef typename rvdetail::enable_evaluation<Data>::vector_t vector_t;
    typedef typename vector_t::evaluated_t return_t; // TODO
    typedef typename rule_t::temporaries_t temporaries_t;
    typedef typename rule_t::return_t trreturn_t;

    template<class Return>
    static void doit(const Data& input, temporaries_t temps, Return* output)
    {
        for(typename return_t::idx_t i = 0;i < output->size();++i)
        {
            rule_t::doit(translator::make(input, i), temps, &((*output)[i]));
        }
    }
};

// TODO scalar multiplication etc
} // rules
} // flint
#endif