This file is indexed.

/usr/include/root/Math/Minimizer.h is in libroot-math-mathcore-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
// @(#)root/mathcore:$Id$
// Author: L. Moneta Fri Sep 22 15:06:47 2006

/**********************************************************************
 *                                                                    *
 * Copyright (c) 2006  LCG ROOT Math Team, CERN/PH-SFT                *
 *                                                                    *
 *                                                                    *
 **********************************************************************/

// Header file for class Minimizer

#ifndef ROOT_Math_Minimizer
#define ROOT_Math_Minimizer

#ifndef ROOT_Math_IFunction
#include "Math/IFunction.h"
#endif

#ifndef ROOT_Math_MinimizerOptions
#include "Math/MinimizerOptions.h"
#endif

#ifndef ROOT_Math_Util
#include "Math/Util.h"
#endif

#ifndef ROOT_Math_Error
#include "Math/Error.h"
#endif



#include <vector> 
#include <string> 

#include <limits> 
#include <cmath>


namespace ROOT { 

   namespace Fit { 
      class ParameterSettings;
   }
   

   namespace Math { 

/**
   @defgroup MultiMin Multi-dimensional Minimization
   @ingroup NumAlgo

   Classes implementing algorithms for multi-dimensional minimization 
 */



//_______________________________________________________________________________
/** 
   Abstract Minimizer class, defining  the interface for the various minimizer
   (like Minuit2, Minuit, GSL, etc..) 
   Plug-in's exist in ROOT to be able to instantiate the derived classes like 
   ROOT::Math::GSLMinimizer or ROOT::Math::Minuit2Minimizer via the 
   plug-in manager.

   Provides interface for setting the function to be minimized. 
   The function must  implemente the multi-dimensional generic interface
   ROOT::Math::IBaseFunctionMultiDim. 
   If the function provides gradient calculation 
   (implements the ROOT::Math::IGradientFunctionMultiDim interface) this will be 
   used by the Minimizer. 

   It Defines also interface for setting the initial values for the function variables (which are the parameters in 
   of the model function in case of solving for fitting) and especifying their limits. 

   It defines the interface to set and retrieve basic minimization parameters 
   (for specific Minimizer parameters one must use the derived classes). 

   Then it defines the interface to retrieve the result of minimization ( minimum X values, function value, 
   gradient, error on the mimnimum, etc...)

   @ingroup MultiMin
*/
 
class Minimizer {

public: 

   /** 
      Default constructor
   */ 
   Minimizer () : 
      fValidError(false),
      fStatus(-1)
   {} 

   /** 
      Destructor (no operations)
   */ 
   virtual ~Minimizer ()  {}  




private:
   // usually copying is non trivial, so we make this unaccessible

   /** 
      Copy constructor
   */ 
   Minimizer(const Minimizer &) {} 

   /** 
      Assignment operator
   */ 
   Minimizer & operator = (const Minimizer & rhs)  {
      if (this == &rhs) return *this;  // time saving self-test
      return *this;
   }

public: 
   
   /// reset for consecutive minimizations - implement if needed 
   virtual void Clear() {}

   /// set the function to minimize
   virtual void SetFunction(const ROOT::Math::IMultiGenFunction & func) = 0; 

   /// set a function to minimize using gradient 
   virtual void SetFunction(const ROOT::Math::IMultiGradFunction & func) 
   {
      SetFunction(static_cast<const ::ROOT::Math::IMultiGenFunction &> (func));
   }
   

   /// add variables  . Return number of variables successfully added
   template<class VariableIterator> 
   int SetVariables(const VariableIterator & begin, const VariableIterator & end) { 
      unsigned int ivar = 0; 
      for ( VariableIterator vitr = begin; vitr != end; ++vitr) { 
         bool iret = false; 
         if (vitr->IsFixed() )
            iret = SetFixedVariable(ivar,  vitr->Name(), vitr->Value() ); 
         else if (vitr->IsDoubleBound() )
            iret = SetLimitedVariable(ivar,  vitr->Name(), vitr->Value(), vitr->StepSize(), vitr->LowerLimit(), vitr->UpperLimit() );
         else if (vitr->HasLowerLimit() )
            iret = SetLowerLimitedVariable(ivar,  vitr->Name(), vitr->Value(), vitr->StepSize(), vitr->LowerLimit() );
         else if (vitr->HasUpperLimit() )
            iret = SetUpperLimitedVariable(ivar,  vitr->Name(), vitr->Value(), vitr->StepSize(), vitr->UpperLimit() );
         else 
            iret = SetVariable( ivar, vitr->Name(), vitr->Value(), vitr->StepSize() ); 

         if (iret) ivar++; 

         // an error message should be eventually be reported in the virtual single SetVariable methods
      }
      return ivar; 
   }
   /// set a new free variable 
   virtual bool SetVariable(unsigned int ivar, const std::string & name, double val, double step) = 0; 
   /// set a new lower limit variable  (override if minimizer supports them )
   virtual bool SetLowerLimitedVariable(unsigned int  ivar , const std::string & name , double val , double step , double lower ) { 
      return SetLimitedVariable(ivar, name, val, step, lower, std::numeric_limits<double>::infinity() );  
   } 
   /// set a new upper limit variable (override if minimizer supports them )
   virtual bool SetUpperLimitedVariable(unsigned int ivar , const std::string & name , double val , double step , double upper ) { 
      return SetLimitedVariable(ivar, name, val, step, - std::numeric_limits<double>::infinity(), upper );  
   } 
   /// set a new upper/lower limited variable (override if minimizer supports them ) otherwise as default set an unlimited variable
   virtual bool SetLimitedVariable(unsigned int ivar  , const std::string & name  , double val  , double  step , 
                                   double lower , double  upper ) { 
      MATH_WARN_MSG("Minimizer::SetLimitedVariable","Setting of limited variable not implemented - set as unlimited");
      MATH_UNUSED(lower); MATH_UNUSED(upper); 
      return SetVariable(ivar, name, val, step);
   }
   /// set a new fixed variable (override if minimizer supports them )
   virtual bool SetFixedVariable(unsigned int  ivar  , const std::string &  name , double val  ) { 
      MATH_ERROR_MSG("Minimizer::SetFixedVariable","Setting of fixed variable not implemented");
      MATH_UNUSED(ivar); MATH_UNUSED(name); MATH_UNUSED(val); 
      return false; 
   }
   /// set the value of an already existing variable 
   virtual bool SetVariableValue(unsigned int ivar , double value) { 
      MATH_ERROR_MSG("Minimizer::SetVariableValue","Set of a variable value not implemented");
      MATH_UNUSED(ivar); MATH_UNUSED(value);
      return false;  
   }
   /// set the values of all existing variables (array must be dimensioned to the size of the existing parameters)
   virtual bool SetVariableValues(const double * x) { 
      bool ret = true; 
      unsigned int i = 0;
      while ( i <= NDim() && ret) { 
         ret &= SetVariableValue(i,x[i] ); i++; 
      }
      return ret; 
   }
   /// set the step size of an already existing variable
   virtual bool SetVariableStepSize(unsigned int ivar, double value ) {
      MATH_ERROR_MSG("Minimizer::SetVariableStepSize","Setting an existing variable step size not implemented");
      MATH_UNUSED(ivar); MATH_UNUSED(value);
      return false;  
   }
   /// set the lower-limit of an already existing variable 
   virtual bool SetVariableLowerLimit(unsigned int ivar, double lower) { 
      MATH_ERROR_MSG("Minimizer::SetVariableLowerLimit","Setting an existing variable limit not implemented");
      MATH_UNUSED(ivar); MATH_UNUSED(lower);
      return false;  
   }
   /// set the upper-limit of an already existing variable 
   virtual bool SetVariableUpperLimit(unsigned int ivar, double upper) { 
      MATH_ERROR_MSG("Minimizer::SetVariableUpperLimit","Setting an existing variable limit not implemented");
      MATH_UNUSED(ivar); MATH_UNUSED(upper);
      return false;  
   }
   /// set the limits of an already existing variable 
   virtual bool SetVariableLimits(unsigned int ivar, double lower, double upper) { 
      return SetVariableLowerLimit(ivar,lower) && SetVariableUpperLimit(ivar,upper);
   }
   /// fix an existing variable
   virtual bool FixVariable(unsigned int ivar) { 
      MATH_ERROR_MSG("Minimizer::FixVariable","Fixing an existing variable not implemented");      
      MATH_UNUSED(ivar);
      return false; 
   }
   /// release an existing variable
   virtual bool ReleaseVariable(unsigned int ivar) {
      MATH_ERROR_MSG("Minimizer::ReleaseVariable","Releasing an existing variable not implemented");      
      MATH_UNUSED(ivar);
      return false; 
   }
   /// query if an existing variable is fixed (i.e. considered constant in the minimization)
   /// note that by default all variables are not fixed 
   virtual bool IsFixedVariable(unsigned int ivar) const {
      MATH_ERROR_MSG("Minimizer::IsFixedVariable","Quering an existing variable not implemented");      
      MATH_UNUSED(ivar);
      return false; 
   }
   /// get variable settings in a variable object (like ROOT::Fit::ParamsSettings)
   virtual bool GetVariableSettings(unsigned int ivar, ROOT::Fit::ParameterSettings & /*pars */ ) const {
      MATH_ERROR_MSG("Minimizer::GetVariableSettings","Quering an existing variable not implemented");      
      MATH_UNUSED(ivar); 
      //MATH_UNUSED(pars);
      return false; 
   }


   /// set the initial range of an existing variable
   virtual bool SetVariableInitialRange(unsigned int /* ivar */, double /* mininitial */, double /* maxinitial */) {
     return false;
   }

   /// method to perform the minimization
   virtual  bool Minimize() = 0; 

   /// return minimum function value
   virtual double MinValue() const = 0; 

   /// return  pointer to X values at the minimum 
   virtual const double *  X() const = 0; 

   /// return expected distance reached from the minimum (re-implement if minimizer provides it
   virtual double Edm() const { return -1; } 

   /// return pointer to gradient values at the minimum 
   virtual const double *  MinGradient() const { return NULL; }

   /// number of function calls to reach the minimum 
   virtual unsigned int NCalls() const { return 0; }

   /// number of iterations to reach the minimum 
   virtual unsigned int NIterations() const { return NCalls(); }    

   /// this is <= Function().NDim() which is the total 
   /// number of variables (free+ constrained ones) 
   virtual unsigned int NDim() const = 0;  

   /// number of free variables (real dimension of the problem) 
   /// this is <= Function().NDim() which is the total 
   /// (re-implement if minimizer supports bounded parameters)
   virtual unsigned int NFree() const { return NDim(); }

   /// minimizer provides error and error matrix
   virtual bool ProvidesError() const { return false; }

   /// return errors at the minimum 
   virtual const double * Errors() const { return NULL; }

   /** return covariance matrices element for variables ivar,jvar
       if the variable is fixed the return value is zero
       The ordering of the variables is the same as in the parameter and errors vectors     
   */ 
   virtual double CovMatrix(unsigned int  ivar , unsigned int jvar ) const {
      MATH_UNUSED(ivar); MATH_UNUSED(jvar);
      return 0; 
   }

   /** 
       Fill the passed array with the  covariance matrix elements 
       if the variable is fixed or const the value is zero. 
       The array will be filled as cov[i *ndim + j]
       The ordering of the variables is the same as in errors and parameter value. 
       This is different from the direct interface of Minuit2 or TMinuit where the 
       values were obtained only to variable parameters
   */ 
   virtual bool GetCovMatrix(double * covMat) const { 
      MATH_UNUSED(covMat);
      return false; 
   } 

   /** 
       Fill the passed array with the Hessian matrix elements 
       The Hessian matrix is the matrix of the second derivatives 
       and is the inverse of the covariance matrix
       If the variable is fixed or const the values for that variables are zero. 
       The array will be filled as h[i *ndim + j]
   */ 
   virtual bool GetHessianMatrix(double * hMat) const { 
      MATH_UNUSED(hMat);
      return false; 
   }


   ///return status of covariance matrix 
   /// using Minuit convention {0 not calculated 1 approximated 2 made pos def , 3 accurate}
   /// Minimizer who implements covariance matrix calculation will re-implement the method
   virtual int CovMatrixStatus() const {  
      return 0; 
   }

   /**
      return correlation coefficient between variable i and j.
      If the variable is fixed or const the return value is zero
    */
   virtual double Correlation(unsigned int i, unsigned int j ) const { 
      double tmp = CovMatrix(i,i) * CovMatrix(j,j);
      return ( tmp < 0) ? 0 : CovMatrix(i,j) / std::sqrt( tmp );  
   }

   /**
      return global correlation coefficient for variable i
      This is a number between zero and one which gives 
      the correlation between the i-th parameter  and that linear combination of all 
      other parameters which is most strongly correlated with i.
      Minimizer must overload method if implemented 
    */
   virtual double GlobalCC(unsigned int ivar) const {
      MATH_UNUSED(ivar);
      return -1; 
   }

   /**
      minos error for variable i, return false if Minos failed or not supported 
      and the lower and upper errors are returned in errLow and errUp
      An extra flag  specifies if only the lower (option=-1) or the upper (option=+1) error calculation is run
      (This feature is not yet implemented)
   */
   virtual bool GetMinosError(unsigned int ivar , double & errLow, double & errUp, int option = 0) { 
      MATH_ERROR_MSG("Minimizer::GetMinosError","Minos Error not implemented");      
      MATH_UNUSED(ivar); MATH_UNUSED(errLow); MATH_UNUSED(errUp); MATH_UNUSED(option);      
      return false; 
   }  

   /**
      perform a full calculation of the Hessian matrix for error calculation
    */
   virtual bool Hesse() { 
      MATH_ERROR_MSG("Minimizer::Hesse","Hesse not implemented");      
      return false; 
   }

   /**
      scan function minimum for variable i. Variable and function must be set before using Scan 
      Return false if an error or if minimizer does not support this functionality
    */
   virtual bool Scan(unsigned int ivar , unsigned int & nstep , double * x , double * y , 
                     double xmin = 0, double xmax = 0) {
      MATH_ERROR_MSG("Minimizer::Scan","Scan not implemented");      
      MATH_UNUSED(ivar); MATH_UNUSED(nstep); MATH_UNUSED(x); MATH_UNUSED(y);      
      MATH_UNUSED(xmin); MATH_UNUSED(xmax);
      return false; 
   }

   /**
      find the contour points (xi, xj) of the function for parameter ivar and jvar around the minimum
      The contour will be find for value of the function = Min + ErrorUp();
    */
   virtual bool Contour(unsigned int ivar , unsigned int jvar, unsigned int & npoints, 
                        double *  xi , double * xj ) { 
      MATH_ERROR_MSG("Minimizer::Contour","Contour not implemented");      
      MATH_UNUSED(ivar); MATH_UNUSED(jvar); MATH_UNUSED(npoints); 
      MATH_UNUSED(xi); MATH_UNUSED(xj);
      return false; 
   }

   /// return reference to the objective function
   ///virtual const ROOT::Math::IGenFunction & Function() const = 0; 

   /// print the result according to set level (implemented for TMinuit for mantaining Minuit-style printing)
   virtual void PrintResults() {}

   /// get name of variables (override if minimizer support storing of variable names)
   /// return an empty string if variable is not found
   virtual std::string VariableName(unsigned int ivar) const { 
      MATH_UNUSED(ivar);
      return std::string(); // return empty string 
   } 

   /// get index of variable given a variable given a name
   /// return -1 if variable is not found
   virtual int VariableIndex(const std::string & name) const {
      MATH_ERROR_MSG("Minimizer::VariableIndex","Getting variable index from name not implemented");      
      MATH_UNUSED(name);
      return -1; 
   }
      
   /** minimizer configuration parameters **/

   /// set print level
   int PrintLevel() const { return fOptions.PrintLevel(); }

   ///  max number of function calls
   unsigned int MaxFunctionCalls() const { return fOptions.MaxFunctionCalls(); } 

   /// max iterations
   unsigned int MaxIterations() const { return fOptions.MaxIterations(); } 

   /// absolute tolerance 
   double Tolerance() const { return  fOptions.Tolerance(); }

   /// precision of minimizer in the evaluation of the objective function
   /// ( a value <=0 corresponds to the let the minimizer choose its default one)
   double Precision() const { return fOptions.Precision(); }
   
   /// strategy 
   int Strategy() const { return fOptions.Strategy(); }

   /// status code of minimizer 
   int Status() const { return fStatus; } 

   /// return the statistical scale used for calculate the error
   /// is typically 1 for Chi2 and 0.5 for likelihood minimization
   double ErrorDef() const { return fOptions.ErrorDef(); } 

   ///return true if Minimizer has performed a detailed error validation (e.g. run Hesse for Minuit)
   bool IsValidError() const { return fValidError; }

   /// retrieve the minimizer options (implement derived class if needed)
   virtual MinimizerOptions  Options() const { 
      return fOptions;
   }

   /// set print level
   void SetPrintLevel(int level) { fOptions.SetPrintLevel(level); }

   ///set maximum of function calls 
   void SetMaxFunctionCalls(unsigned int maxfcn) { if (maxfcn > 0) fOptions.SetMaxFunctionCalls(maxfcn); }

   /// set maximum iterations (one iteration can have many function calls) 
   void SetMaxIterations(unsigned int maxiter) { if (maxiter > 0) fOptions.SetMaxIterations(maxiter); } 

   /// set the tolerance
   void SetTolerance(double tol) { fOptions.SetTolerance(tol); }

   /// set in the minimizer the objective function evaluation precision 
   /// ( a value <=0 means the minimizer will choose its optimal value automatically, i.e. default case)
   void SetPrecision(double prec) { fOptions.SetPrecision(prec); }

   ///set the strategy 
   void SetStrategy(int strategyLevel) { fOptions.SetStrategy(strategyLevel); }  

   /// set scale for calculating the errors
   void SetErrorDef(double up) { fOptions.SetErrorDef(up); }

   /// flag to check if minimizer needs to perform accurate error analysis (e.g. run Hesse for Minuit)
   void SetValidError(bool on) { fValidError = on; } 

   /// set all options in one go
   void SetOptions(const MinimizerOptions & opt) {
      fOptions = opt;
   }

   /// reset the defaut options (defined in MinimizerOptions)
   void SetDefaultOptions() {
      fOptions.ResetToDefaultOptions();
   }

protected: 


//private: 


   // keep protected to be accessible by the derived classes 
 

   bool fValidError;            // flag to control if errors have been validated (Hesse has been run in case of Minuit)
   MinimizerOptions fOptions;   // minimizer options
   int fStatus;                 // status of minimizer    
}; 

   } // end namespace Math

} // end namespace ROOT


#endif /* ROOT_Math_Minimizer */