This file is indexed.

/usr/include/root/Math/Dfactir.h is in libroot-math-smatrix-dev 5.34.30-0ubuntu8.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
// @(#)root/smatrix:$Id$
// Authors: T. Glebe, L. Moneta    2005  

#ifndef ROOT_Math_Dfactir
#define ROOT_Math_Dfactir
// ********************************************************************
//
// source:
//
// type:      source code
//
// created:   02. Apr 2001
//
// author:    Thorsten Glebe
//            HERA-B Collaboration
//            Max-Planck-Institut fuer Kernphysik
//            Saupfercheckweg 1
//            69117 Heidelberg
//            Germany
//            E-mail: T.Glebe@mpi-hd.mpg.de
//
// Description: Determinant of a square matrix, needed for Dfinv()
//              Code was taken from CERNLIB::kernlib dfact function, translated
//              from FORTRAN to C++ and optimized.
//
// changes:
// 02 Apr 2001 (TG) creation
//
// ********************************************************************

#include <cmath>

namespace ROOT { 

  namespace Math { 


/** Dfactir.
    Function to compute the determinant from a square matrix, Det(A) of
    dimension idim and order n. A working area ir is returned which is
    needed by the Dfinv routine.

    @author T. Glebe
*/
template <class Matrix, unsigned int n, unsigned int idim>
bool Dfactir(Matrix& rhs, typename Matrix::value_type& det, unsigned int* ir)
  // int *n, float *a, int *idim, int *ir, int *ifail, float *det, int *jfail)
{

#ifdef XXX
  if (idim < n || n <= 0) {
    return false;
  }
#endif


  /* Initialized data */
   typename Matrix::value_type* a = rhs.Array();

   /* Local variables */
   unsigned int nxch, i, j, k, l;
   typename Matrix::value_type p, q, tf;

   /* Parameter adjustments */
   a -= idim + 1;
   --ir;

   /* Function Body */

   // fact.inc
   nxch = 0;
   det = 1.;
   for (j = 1; j <= n; ++j) {
      const unsigned int ji = j * idim;
      const unsigned int jj = j + ji;

      k = j;
      p = std::abs(a[jj]);

      if (j != n) {
         for (i = j + 1; i <= n; ++i) {
            q = std::abs(a[i + ji]);
            if (q > p) {
               k = i;
               p = q;
            }
         } // for i

         if (k != j) {
            for (l = 1; l <= n; ++l) {
               const unsigned int li = l*idim;
               const unsigned int jli = j + li;
               const unsigned int kli = k + li;
               tf = a[jli];
               a[jli] = a[kli];
               a[kli] = tf;
            } // for l
            ++nxch;
            ir[nxch] = (j << 12) + k;
         } // if k != j
      } // if j!=n

      if (p <= 0.) {
         det = 0;
         return false;
      }

      det *= a[jj];
#ifdef XXX
      t = std::abs(det);
      if (t < 1e-19 || t > 1e19) {
         det = 0;
         return false;
      }
#endif

      a[jj] = 1. / a[jj];
      if (j == n) {
         continue;
      }

      const unsigned int jm1 = j - 1;
      const unsigned int jpi = (j + 1) * idim;
      const unsigned int jjpi = j + jpi;

      for (k = j + 1; k <= n; ++k) {
         const unsigned int ki  = k * idim;
         const unsigned int jki = j + ki;
         const unsigned int kji = k + jpi;
         if (j != 1) {
            for (i = 1; i <= jm1; ++i) {
               const unsigned int ii = i * idim;
               a[jki] -= a[i + ki] * a[j + ii];
               a[kji] -= a[i + jpi] * a[k + ii];
            } // for i
         }
         a[jki] *= a[jj];
         a[kji] -= a[jjpi] * a[k + ji];
      } // for k
   } // for j
   
   if (nxch % 2 != 0) {
      det = -(det);
   }
   ir[n] = nxch;
   return true;
} // end of Dfact


  }  // namespace Math

}  // namespace ROOT
          


#endif /* ROOT_Math_Dfactir */