This file is indexed.

/usr/include/trilinos/Tpetra_Experimental_BlockView.hpp is in libtrilinos-tpetra-dev 12.4.2-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
// @HEADER
// ***********************************************************************
//
//          Tpetra: Templated Linear Algebra Services Package
//                 Copyright (2008) Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Michael A. Heroux (maherou@sandia.gov)
//
// ************************************************************************
// @HEADER

#ifndef TPETRA_EXPERIMENTAL_BLOCKVIEW_HPP
#define TPETRA_EXPERIMENTAL_BLOCKVIEW_HPP

/// \file Tpetra_Experimental_BlockView.hpp
/// \brief Declaration and definition of LittleBlock and LittleVector

#include "Tpetra_ConfigDefs.hpp"
#include "Teuchos_ScalarTraits.hpp"
#include "Teuchos_LAPACK.hpp"
#ifdef HAVE_TPETRA_INST_FLOAT128
#  include "Teuchos_BLAS.hpp"
#endif // HAVE_TPETRA_INST_FLOAT128

#include "Kokkos_ArithTraits.hpp"
#include "Kokkos_Complex.hpp"

#ifdef HAVE_TPETRA_INST_FLOAT128
#  include "Teuchos_Details_Lapack128.hpp"
#endif // HAVE_TPETRA_INST_FLOAT128

namespace Tpetra {
namespace Details {

  /// \brief Return the Teuchos::LAPACK specialization corresponding
  ///   to the given Scalar type.
  ///
  /// The reason this exists is the same reason why the
  /// impl_scalar_type typedef in Tpetra::MultiVector may differ from
  /// its Scalar template parameter.  For example, Scalar =
  /// std::complex<T> corresponds to impl_scalar_type =
  /// Kokkos::complex<T>.  The latter has no Teuchos::LAPACK
  /// specialization, so we have to map it back to std::complex<T>.
  template<class Scalar>
  struct GetLapackType {
    typedef Scalar lapack_scalar_type;
    typedef Teuchos::LAPACK<int, Scalar> lapack_type;
  };

  template<class T>
  struct GetLapackType<Kokkos::complex<T> > {
    typedef std::complex<T> lapack_scalar_type;
    typedef Teuchos::LAPACK<int, std::complex<T> > lapack_type;
  };

#ifdef HAVE_TPETRA_INST_FLOAT128
  template<>
  struct GetLapackType<__float128> {
    typedef __float128 lapack_scalar_type;
    // Use the Lapack128 class we declared above to implement the
    // linear algebra operations needed for small dense blocks and
    // vectors.
    typedef Teuchos::Details::Lapack128 lapack_type;
  };
#endif // HAVE_TPETRA_INST_FLOAT128

} // namespace Details
} // namespace Tpetra


namespace Tpetra {

/// \brief Namespace for new Tpetra features that are not ready for
///   public release, but are ready for evaluation by friendly expert
///   users.
///
/// \warning Expect header files, classes, functions, and other
///   interfaces to change or disappear.  Anything in this namespace
///   is under active development and evaluation.  Documentation may
///   be sparse or not exist yet.  Generally, unit tests will exist,
///   but coverage may be lacking.  If you understand these caveats
///   and accept them, please feel free to take a look inside and try
///   things out.
namespace Experimental {

/// \class LittleBlock
/// \brief Nonowning view of a square dense block in a block matrix.
/// \tparam Scalar The type of entries in the block.
/// \tparam LO The type of local indices.  See the documentation of
///   the first template parameter of Map for requirements.
///
/// "Little" means local (not distributed over multiple MPI processes;
/// stored to maximize locality) and small (think 3x3, not 1000x1000).
///
/// The \c Scalar template parameter may be const or nonconst.  This
/// is one reason why instance methods below that take a LittleBlock
/// accept it as a template parameter: that lets you add a const
/// LittleBlock (e.g., LittleBlock<const double, int>) to a nonconst
/// LittleBlock (e.g., LittleBlock<double, int>).
template<class Scalar, class LO>
class LittleBlock {
public:
  typedef Scalar scalar_type;
  typedef typename Kokkos::Details::ArithTraits<Scalar>::val_type impl_scalar_type;

private:
  typedef Kokkos::Details::ArithTraits<impl_scalar_type> STS;

public:
  /// \brief Constructor
  /// \param A [in] Pointer to the block's entries
  /// \param blockSize [in] Dimension of the block (all blocks are square)
  /// \param strideX [in] Stride between consecutive entries in a column
  /// \param strideY [in] Stride between consecutive entries in a row
  LittleBlock (Scalar* const A,
               const LO blockSize,
               const LO strideX,
               const LO strideY) :
    A_ (reinterpret_cast<impl_scalar_type*> (A)),
    blockSize_ (blockSize),
    strideX_ (strideX),
    strideY_ (strideY)
  {}

  /// \brief Constructor that takes an \c impl_scalar_type pointer.
  ///
  /// \param A [in] Pointer to the block's entries, as
  ///   <tt>impl_scalar_type*</tt> rather than <tt>Scalar*</tt>
  /// \param blockSize [in] Dimension of the block (all blocks are square)
  /// \param strideX [in] Stride between consecutive entries in a column
  /// \param strideY [in] Stride between consecutive entries in a row
  ///
  /// While this constructor is templated on a type \c T, the intent
  /// is that <tt>T == impl_scalar_type</tt>.  (We must template on T
  /// rather than using <tt>impl_scalar_type</tt> directly, because of
  /// how std::enable_if works.)  The long, complicated std::enable_if
  /// expression ensures that this constructor only exists if
  /// <tt>Scalar</tt> differs from <tt>impl_scalar_type</tt>, but the
  /// two types are mutually compatible and have the same size.  (They
  /// must be bitwise compatible, so that \c reinterpret_cast makes
  /// sense between them.)
  template<class T>
  LittleBlock (T* const A,
               const LO blockSize,
               const LO strideX,
               const LO strideY,
               typename std::enable_if<
                 ! std::is_same<Scalar, T>::value &&
                 std::is_convertible<Scalar, T>::value &&
                 sizeof (Scalar) == sizeof (T),
               int*>::type ignoreMe = NULL) :
    A_ (reinterpret_cast<impl_scalar_type*> (A)),
    blockSize_ (blockSize),
    strideX_ (strideX),
    strideY_ (strideY)
  {}

  //! The block size (number of rows, and number of columns).
  LO getBlockSize () const {
    return blockSize_;
  }

  //! Pointer to the block's entries, as <tt>Scalar*</tt>.
  Scalar* getRawPtr () const {
    return reinterpret_cast<Scalar*> (A_);
  }

  /// \brief Reference to entry (i,j) of the block.
  ///
  /// \note To Tpetra developers: This is returned as
  ///   <tt>impl_scalar_type</tt> and not as \c Scalar, in order to
  ///   avoid a lot of reinterpret_cast calls in the inner loop of the
  ///   sparse matrix-vector multiply kernel of
  ///   Tpetra::Experimental::BlockCrsMatrix.  Any pair of types
  ///   <tt>impl_scalar_type</tt>, \c Scalar used here should always
  ///   be convertible in either direction, so the return type should
  ///   not pose any issues in practice.
  impl_scalar_type& operator() (const LO i, const LO j) const {
    return A_[i * strideX_ + j * strideY_];
  }

  //! <tt>*this := *this + alpha * X</tt>.
  template<class LittleBlockType>
  void update (const Scalar& alpha, const LittleBlockType& X) const {
    const impl_scalar_type theAlpha = static_cast<Scalar> (alpha);
    for (LO j = 0; j < blockSize_; ++j) {
      for (LO i = 0; i < blockSize_; ++i) {
        (*this)(i,j) += theAlpha * X(i,j);
      }
    }
  }

  //! <tt>*this := X</tt>.
  template<class LittleBlockType>
  void assign (const LittleBlockType& X) const {
    for (LO j = 0; j < blockSize_; ++j) {
      for (LO i = 0; i < blockSize_; ++i) {
        (*this)(i,j) = X(i,j);
      }
    }
  }

  //! <tt>(*this)(i,j) := alpha * (*this)(i,j)</tt> for all (i,j).
  void scale (const Scalar& alpha) const {
    const impl_scalar_type theAlpha = static_cast<Scalar> (alpha);
    for (LO j = 0; j < blockSize_; ++j) {
      for (LO i = 0; i < blockSize_; ++i) {
        (*this)(i,j) *= theAlpha;
      }
    }
  }

  //! <tt>(*this)(i,j) := alpha</tt> for all (i,j).
  void fill (const Scalar& alpha) const {
    const impl_scalar_type theAlpha = static_cast<Scalar> (alpha);
    for (LO j = 0; j < blockSize_; ++j) {
      for (LO i = 0; i < blockSize_; ++i) {
        (*this)(i,j) = theAlpha;
      }
    }
  }

  /// \brief <tt>(*this)(i,j) := max(abs((*this)(i,j)), abs(X(i,j)))</tt>
  ///   for all (i,j).
  ///
  /// Tpetra uses this operation to implement the ABSMAX CombineMode.
  template<class LittleBlockType>
  void absmax (const LittleBlockType& X) const {
    for (LO j = 0; j < blockSize_; ++j) {
      for (LO i = 0; i < blockSize_; ++i) {
        impl_scalar_type& Y_ij = (*this)(i,j);
        const impl_scalar_type X_ij = X(i,j);
        Y_ij = std::max (STS::magnitude (Y_ij), STS::magnitude (X_ij));
      }
    }
  }

  void factorize (int* ipiv, int & info)
  {
    typedef typename Tpetra::Details::GetLapackType<Scalar>::lapack_scalar_type LST;
    typedef typename Tpetra::Details::GetLapackType<Scalar>::lapack_type lapack_type;

    LST* const A_raw = reinterpret_cast<LST*> (A_);
    lapack_type lapack;
    // NOTE (mfh 03 Jan 2015) This method doesn't check the 'info'
    // output argument, but it returns info, so the user is
    // responsible for checking.
    lapack.GETRF(blockSize_, blockSize_, A_raw, blockSize_, ipiv, &info);
  }

  template<class LittleVectorType>
  void solve (LittleVectorType & X, const int* ipiv) const
  {
    typedef typename Tpetra::Details::GetLapackType<Scalar>::lapack_scalar_type LST;
    typedef typename Tpetra::Details::GetLapackType<Scalar>::lapack_type lapack_type;

    // FIXME (mfh 03 Jan 2015) Check using enable_if that Scalar can
    // be safely converted to LST.

    lapack_type lapack;
    LST* const A_raw = reinterpret_cast<LST*> (A_);
    LST* const X_raw = reinterpret_cast<LST*> (X.getRawPtr ());
    int info = 0;
    char trans = 'T';
    // FIXME (mfh 03 Jan 2015) Either check the 'info' output
    // argument, or return it.
    lapack.GETRS(trans, blockSize_, 1, A_raw, blockSize_, ipiv, X_raw, blockSize_, &info);
  }

private:
  impl_scalar_type* const A_;
  const LO blockSize_;
  const LO strideX_;
  const LO strideY_;
};


/// \class LittleVector
/// \brief Nonowning view of a set of degrees of freedom corresponding
///   to a mesh point in a block vector or multivector.
/// \tparam Scalar The type of entries.
/// \tparam LO The type of local indices.  See the documentation of
///   the first template parameter of Map for requirements.
///
/// "Little" means local (not distributed over multiple MPI processes;
/// stored to maximize locality) and small (think length 3, not length
/// 1000).
///
/// The \c Scalar template parameter may be const or nonconst.  This
/// is one reason why instance methods below that take a LittleVector
/// accept it as a template parameter: that lets you add a const
/// LittleVector (e.g., LittleVector<const double, int>) to a nonconst
/// LittleVector (e.g., LittleVector<double, int>).
template<class Scalar, class LO>
class LittleVector {
public:
  typedef Scalar scalar_type;
  typedef typename Kokkos::Details::ArithTraits<Scalar>::val_type impl_scalar_type;

private:
  typedef Kokkos::Details::ArithTraits<impl_scalar_type> STS;

public:
  /// \brief Constructor
  /// \param A [in] Pointer to the vector's entries
  /// \param blockSize [in] Dimension of the vector
  /// \param stride [in] Stride between consecutive entries
  LittleVector (Scalar* const A, const LO blockSize, const LO stride) :
    A_ (reinterpret_cast<impl_scalar_type*> (A)),
    blockSize_ (blockSize),
    strideX_ (stride)
  {}

  /// \brief Constructor that takes an \c impl_scalar_type pointer.
  ///
  /// \param A [in] Pointer to the vector's entries, as
  ///   <tt>impl_scalar_type*</tt> rather than <tt>Scalar*</tt>
  /// \param blockSize [in] Dimension of the vector
  /// \param stride [in] Stride between consecutive entries
  ///
  /// While this constructor is templated on a type \c T, the intent
  /// is that <tt>T == impl_scalar_type</tt>.  (We must template on T
  /// rather than using <tt>impl_scalar_type</tt> directly, because of
  /// how std::enable_if works.)  The long, complicated std::enable_if
  /// expression ensures that this constructor only exists if
  /// <tt>Scalar</tt> differs from <tt>impl_scalar_type</tt>, but the
  /// two types are mutually compatible and have the same size.  (They
  /// must be bitwise compatible, so that \c reinterpret_cast makes
  /// sense between them.)
  template<class T>
  LittleVector (T* const A,
                const LO blockSize,
                const LO stride,
                typename std::enable_if<
                  ! std::is_same<Scalar, T>::value &&
                  std::is_convertible<Scalar, T>::value &&
                  sizeof (Scalar) == sizeof (T),
                int*>::type ignoreMe = NULL) :
    A_ (reinterpret_cast<impl_scalar_type*> (A)),
    blockSize_ (blockSize),
    strideX_ (stride)
  {}

  //! Pointer to the block's entries.
  Scalar* getRawPtr () const {
    return reinterpret_cast<Scalar*> (A_);
  }

  //! The block size (number of degrees of freedom per mesh point).
  LO getBlockSize () const {
    return blockSize_;
  }

  //! Stride between consecutive entries.
  LO getStride () const {
    return strideX_;
  }

  /// \brief Reference to entry (i) of the vector.
  ///
  /// \note To Tpetra developers: This is returned as
  ///   <tt>impl_scalar_type</tt> and not as \c Scalar, in order to
  ///   avoid a lot of reinterpret_cast calls in the inner loop of the
  ///   sparse matrix-vector multiply kernel of
  ///   Tpetra::Experimental::BlockCrsMatrix.  Any pair of types
  ///   <tt>impl_scalar_type</tt>, \c Scalar used here should always
  ///   be convertible in either direction, so the return type should
  ///   not pose any issues in practice.
  impl_scalar_type& operator() (const LO i) const {
    return A_[i * strideX_];
  }

  //! <tt>*this := *this + alpha * X</tt>.
  template<class LittleVectorType>
  void update (const Scalar& alpha, const LittleVectorType& X) const {
    const impl_scalar_type theAlpha = static_cast<impl_scalar_type> (alpha);
    for (LO i = 0; i < blockSize_; ++i) {
      (*this)(i) += theAlpha * X(i);
    }
  }

  //! <tt>*this := X</tt>.
  template<class LittleVectorType>
  void assign (const LittleVectorType& X) const {
    for (LO i = 0; i < blockSize_; ++i) {
      (*this)(i) = X(i);
    }
  }

  //! <tt>(*this)(i,j) := alpha * (*this)(i,j)</tt> for all (i,j).
  void scale (const Scalar& alpha) const {
    const impl_scalar_type theAlpha = static_cast<impl_scalar_type> (alpha);
    for (LO i = 0; i < blockSize_; ++i) {
      (*this)(i) *= theAlpha;
    }
  }

  //! <tt>(*this)(i,j) := alpha</tt> for all (i,j).
  void fill (const Scalar& alpha) const {
    const impl_scalar_type theAlpha = static_cast<impl_scalar_type> (alpha);
    for (LO i = 0; i < blockSize_; ++i) {
      (*this)(i) = theAlpha;
    }
  }

  /// \brief <tt>(*this)(i,j) := max(abs((*this)(i,j)), abs(X(i,j)))</tt>
  ///   for all (i,j).
  ///
  /// Tpetra uses this operation to implement the ABSMAX CombineMode.
  template<class LittleVectorType>
  void absmax (const LittleVectorType& X) const {
    for (LO i = 0; i < blockSize_; ++i) {
      impl_scalar_type& Y_i = (*this)(i);
      Y_i = std::max (STS::magnitude (Y_i), STS::magnitude (X (i)));
    }
  }

  //! true if and only if all entries of this equal all entries of X.
  template<class LittleVectorType>
  bool equal (const LittleVectorType& X) const {
    if (getBlockSize () != X.getBlockSize ()) {
      return false;
    }
    for (LO i = 0; i < blockSize_; ++i) {
      if ((*this)(i) != X(i)) {
        return false;
      }
    }
    return true;
  }

  //! <tt>(*this) := (*this) + alpha * A * X</tt> (matrix-vector multiply).
  template<class LittleBlockType, class LittleVectorType>
  void
  matvecUpdate (const Scalar& alpha,
                const LittleBlockType& A,
                const LittleVectorType& X) const
  {
    const impl_scalar_type theAlpha = static_cast<impl_scalar_type> (alpha);
    // FIXME (mfh 07 May 2014) This is suitable for column major, not
    // for row major.  Of course, we'll have to change other loops
    // above as well to make row major faster.
    for (LO i = 0; i < blockSize_; ++i) {
      for (LO j = 0; j < blockSize_; ++j) {
        (*this)(i) += theAlpha * A(i,j) * X(j);
      }
    }
  }

private:
  impl_scalar_type* const A_;
  const LO blockSize_;
  const LO strideX_;
};

} // namespace Experimental
} // namespace Tpetra

#endif // TPETRA_EXPERIMENTAL_BLOCKVIEW_HPP