This file is indexed.

/usr/share/octave/packages/interval-1.4.1/@infsup/gauss.m is in octave-interval 1.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
## Copyright 2014-2016 Oliver Heimlich
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @deftypemethod {@@infsup} {@var{x} =} gauss (@var{A}, @var{b})
## 
## Solve a linear interval system @var{A} * @var{x} = @var{b} using Gaussian
## elimination.
##
## The found enclosure is improved with the help of the Gauß-Seidel-method.
##
## Note: This algorithm is very inaccurate and slow for matrices of a dimension 
## greater than 3.  A better solver is provided by @code{mldivide}.  The
## inaccuracy mainly comes from the dependency problem of interval arithmetic
## during back-substitution of the solution's enclosure.
##
## Accuracy: The result is a valid enclosure.
##
## @example
## @group
## gauss (infsup ([1, 0; 0, 2]), [2, 0; 0, 4])
##   @result{} ans = 2×2 interval matrix
##      [2]   [0]
##      [0]   [2]
## @end group
## @end example
## @seealso{@@infsup/mldivide}
## @end deftypemethod

## Author: Oliver Heimlich
## Keywords: interval
## Created: 2014-10-31

function result = gauss (x, y)

if (nargin ~= 2)
    print_usage ();
    return
endif
if (not (isa (x, "infsup")))
    x = infsup (x);
endif
if (not (isa (y, "infsup")))
    y = infsup (y);
endif

if (isscalar (x) || isscalar (y))
    result = rdivide (y, x);
    return
endif

## x must be square
assert (size (x.inf, 1) == size (x.inf, 2), ...
        "gauss: nonconformant arguments, X is not square");
## vertical sizes of x and y must equal
assert (rows (x.inf) == rows (y.inf), ...
        "gauss: nonconformant arguments, first dimension mismatch");

n = length (x.inf);
m = columns (y.inf);

## We have to compute z = inv (x) * y.
## This can be done by Gaußian elimination by solving the following equation
## for the variable z: x * z = y

## Step 1: Perform LUP decomposition of x into triangular matrices L, U and
##         permutation matrix P
##         P * x = L * U

[L, U, P] = lu (x);

## Step 2: Forward substitution 
##         Solve L * s = inv (P) * y

s = permute (inv (P), y);
curelement.type = prevvars.type = Lrowidx.type =  "()";
for i = 1 : m
    ## Special case: k == 1
    ## s (k, i) already is correct
    for k = 2 : n
        curelement.subs = {k, i};
        prevvars.subs = {1 : k, i};
        Lrowidx.subs = {k, 1 : k};
        
        varcol = subsref (s, prevvars);
        Lrow = subsref (L, Lrowidx);
        
        ## We have to subtract varcol (1 : (k - 1)) * Lrow (1 : (k - 1)) from
        ## s (k, i). Since varcol (k) == s (k, i), we can simply set
        ## Lrow (k) = -1 and the dot product will compute the difference for us
        ## with high accurracy.
        Lrow.inf (k) = Lrow.sup (k) = -1;
        
        ## Then, we only have to flip the sign afterwards.
        s = subsasgn (s, curelement, -dot (Lrow, varcol));
    endfor
endfor

## Step 3: Backward substitution
##         Solve U * z = s

z = s;
Urowstart.type = Urowrest.type = "()";
for i = 1 : m
    ## Special case: k == n
    curelement.subs = {n, i};
    Urowstart.subs = {n, n};
    z = subsasgn (z, curelement, ...
                  mulrev (subsref (U, Urowstart), subsref (z, curelement)));
    for k = (n - 1) : -1 : 1
        curelement.subs = {k, i};
        Urowstart.subs = {k, k};
        prevvars.subs = {k : n, i};
        Urowrest.subs = {k, k : n};
        
        varcol = subsref (z, prevvars);
        Urow = subsref (U, Urowrest);
        
        ## Use the same trick like above during forward substitution.
        Urow.inf (1) = Urow.sup (1) = -1;
        
        ## Additionally we must divide the element by the current diagonal
        ## element of U.
        z = subsasgn (z, curelement, ...
                      mulrev (subsref (U, Urowstart), -dot (Urow, varcol)));
    endfor
endfor

## Now we have solved inv (P) * L * U * z = y for z.
##
## The current result for z is only a rough estimation in general, because
## inv (P) * L * U is only an enclosure of the original linear interval
## system x * z = y and the Gaußian elimination above introduces several
## inaccuracies because of aggregated intermediate results and accumulated
## rounding errors.
##
## We can further try to improve the boundaries of the result with the original
## linear system.  This is an iterative method using the mulrev operation.  It
## is quite accurate in each step, because it only depends on one (tightest)
## dot operation and one (tightest) mulrev operation.  However, the convergence
## speed is slow and each cycle is costly, so we have to cancel after one
## iteration.
##
## The method used here is similar to the Gauß-Seidel-method.  Instead of
## diagonal elements of the matrix we use an arbitrary element that does not
## contain zero as an inner element.

xrowidx.type = yidx.type = zcolidx.type = "()";
migx = mig (x);
migx (isnan (migx)) = 0;
for k = 1 : m
    zcolidx.subs = {1 : n, k};
    zcol = subsref (z, zcolidx);
    for j = n : -1 : 1
        z_jk = infsup (zcol.inf (j), zcol.sup (j));
        if (isempty (z_jk) || issingleton (z_jk))
            ## No improvement can be achieved.
            continue
        endif
        i = find (migx (:, j) == max (migx (:, j)), 1);
        xrowidx.subs = {i, 1 : n};
        xrow = subsref (x, xrowidx);
        if (xrow.inf (j) < 0 && xrow.sup (j) > 0)
            ## No improvement can be achieved.
            continue
        endif
        x_ij = infsup (xrow.inf (j), xrow.sup (j));
        yidx.subs = {i, k};
        yelement = subsref (y, yidx);
        
        ## x (i, 1 : n) * z (1 : n, k) shall equal y (i, k).
        ## 1. Solve this equation for x (i, j) * z (j, k).
        ## 2. Compute a (possibly better) enclosure for z (j, k).
        
        xrow.inf (j) = yelement.inf;
        xrow.sup (j) = yelement.sup;
        zcol.inf (j) = zcol.sup (j) = -1;
        z_jk = mulrev (x_ij, -dot (xrow, zcol), z_jk);
        
        zcol.inf (j) = z.inf (j, k) = z_jk.inf;
        zcol.sup (j) = z.sup (j, k) = z_jk.sup;
    endfor
endfor

result = z;

endfunction

## Apply permutation matrix P to an interval matrix: B = P * A.
## This is much faster than a matrix product, because the matrix product would
## use a lot of dot products.
function B = permute (P, A)
    ## Note: [B.inf, B.sup] = deal (P * A.inf, P * A.sup) is not possible,
    ## because empty or unbound intervals would create NaNs during
    ## multiplication with P.
    
    B = A;
    for i = 1 : rows (P)
        targetrow = find (P (i, :) == 1, 1);
        B.inf (targetrow, :) = A.inf (i, :);
        B.sup (targetrow, :) = A.sup (i, :);
    endfor
endfunction

%!test "from the documentation string";
%! assert (gauss (infsup ([1, 0; 0, 2]), [2, 0; 0, 4]) == [2, 0; 0, 2]);