This file is indexed.

/usr/share/octave/packages/interval-1.4.1/@infsup/mldivide.m is in octave-interval 1.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
## Copyright 1990-2000 Institut für Angewandte Mathematik,
##                     Universität Karlsruhe, Germany
## Copyright 2000-2014 Wissenschaftliches Rechnen/Softwaretechnologie,
##                     Universität Wuppertal, Germany
## Copyright 2015-2016 Oliver Heimlich
## 
## This program is derived from FastLSS in CXSC, C++ library for eXtended
## Scientific Computing (V 2.5.4), which is distributed under the terms of
## LGPLv2+.  Original Author is Michael Zimmer.  Migration to Octave code has
## been performed by Oliver Heimlich.
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @defop Method {@@infsup} mldivide (@var{X}, @var{Y})
## @defopx Operator {@@infsup} {@var{X} \ @var{Y}}
## 
## Return the interval matrix left division of @var{X} and @var{Y}.
##
## Accuracy: The result is a valid enclosure.
##
## @example
## @group
## infsup ([1, 0; 0, 2]) \ [2, 0; 0, 4]
##   @result{} ans = 2×2 interval matrix
##      [2]   [0]
##      [0]   [2]
## @end group
## @end example
## @seealso{@@infsup/mtimes, @@infsup/gauss}
## @end defop

## Author: Oliver Heimlich
## Keywords: interval
## Created: 2015-02-17

function result = mldivide (A, b)

if (nargin ~= 2)
    print_usage ();
    return
endif
if (not (isa (A, "infsup")))
    A = infsup (A);
endif
if (not (isa (b, "infsup")))
    b = infsup (b);
elseif (isa (b, "infsupdec"))
    ## Workaround for bug #42735
    result = mldivide (A, b);
    return
endif

if (isscalar (A.inf))
    result = ldivide (A, b);
    return
elseif (not (issquare (A.inf)))
    error ("interval:InvalidOperand", "mldivide: Matrix is not square");
elseif (rows (A.inf) ~= rows (b.inf))
    error ("interval:InvalidOperand", ["mldivide: ", ...
        "nonconformant arguments ", ...
        "(op1 is " num2str(rows (A.inf)) "×" num2str(columns (A.inf)) ",", ...
        " op2 is " num2str(rows (b.inf)) "×" num2str(columns (b.inf)) ")"]);
elseif (isempty (A.inf))
    result = infsup (zeros (0, columns (b.inf)));
    return
endif

## Maximum number of iterations during the verification step
cfg.maxIterVer = 5;
## Epsilon for the verification step
## (used for the Epsilon inflation during verification)
cfg.epsVer = 1e-1;
## Maximum number of iterations during the refinement step
cfg.maxIterRef = 5;
## Epsilon for the refinement step (stopping criterion for refinement step)
cfg.epsRef = 1e-5;
## Maximum number of iterations during residual correction
## (not available for K=1)
cfg.maxIterResCorr = 10;
## Epsilon for the residual correction
cfg.epsResCorr = 1e-6;

## An approximate inverse R of A is computed.  Then an approximate solution
## x1 is computed applying a conventional residual iteration.  For the final
## verification, an interval residual iteration is performed.  An enclosure of
## the unique solution is returned.
##
## If this first step fails, the solver will try to compute a verified solution
## by using an approximate inverse of double length.  This second step takes
## considerably longer than the first step, because all computations must be
## performed using high precision scalar products.

## Compute midpoints of A and b for future reference
Am = mid (A);
bm = mid (b);

## Approximate inversion (non-interval computation)
[R, cond] = inv (Am);
if (cond == 0)
    result = gauss (A, b);
    return
endif

## Part 1 =====================================================================

## Approximate solution x1 (non-interval computation)
x1 = R * bm;
x1 += R * (bm - Am * x1);

## Interval residual x
x = mtimes (R, b - mtimes (A, x1, "valid"), "valid");

C = eye (rows (R)) - mtimes (R, A, "valid");

## Verify solution x1 + x
[x, verified] = verify_and_refine (x, C, cfg, "valid");
if (verified)
    result = x1 + x;
    return
endif

## Part 2 =====================================================================

## R2 = inv (R * Am), with correctly rounded dot product
R2 = zeros (size (R));
for i = 1 : rows (R)
    for j = 1 : columns (R)
        R2 (i, j) = mpfr_vector_dot_d (0.5, R (i, :), Am (:, j));
    endfor
endfor
[R2, cond] = inv (R2);
if (cond == 0)
    result = gauss (A, b);
    return
endif

## R = R2 * R with correctly rounded dot product; error in R2
R1_ = R2_ = zeros (size (R));
for i = 1 : rows (R)
    for j = 1 : columns (R)
        [R1_(i, j), R2_(i, j)] = mpfr_vector_dot_d (0.5, R2 (i, :), R (:, j));
    endfor
endfor
R = R1_; R2 = R2_; clear R1_ R2_;

## Loop over all right hand sides
C_computed = false ();
result = infsup (zeros (size (b.inf)));
for s = 1 : columns (b.inf)
    s_idx.type = "()";
    s_idx.subs = {":", s};
    
    ## x1 = R * bm + R2 * bm with correctly rounded dot product; error in x0
    x1 = x0 = zeros (rows (R), 1);
    parfor i = 1 : rows (R)
        [x1(i), x0(i)] = mpfr_vector_dot_d (0.5, [R(i, :), R2(i, :)], ...
                                                 [bm(:, s); bm(:, s)]);
    endparfor
    
    ## Residual iteration (non-interval computation)
    for k = 1 : cfg.maxIterResCorr
        ## d = bm - Am * x1 - Am * x0 with correctly rounded dot product
        d = zeros (rows (R), 1);
        parfor i = 1 : rows (R)
            d (i) = mpfr_vector_dot_d (0.5, ...
                        [bm(i, s), Am(i, :), Am(i, :)], ...
                        [1;        -x1;      -x0]);
        endparfor
        
        ## y0 = x0 + R * d + R2 * d with correctly rounded dot product
        y0 = zeros (rows (R), 1);
        parfor i = 1 : rows (R)
            y0 (i) = mpfr_vector_dot_d (0.5, ...
                        [x0(i), R(i, :), R2(i, :)], ...
                        [1;     d;       d]);
        endparfor
        
        d = x1 + y0;
        p = relative_error (d, x1 + x0);
        
        if (p >= cfg.epsResCorr && k < cfg.maxIterResCorr)
            ## x0 = x1 + x0 - d with correctly rounded sum
            parfor i = 1 : rows (R)
                x0 (i) = mpfr_vector_sum_d (0.5, [x1(i), x0(i), -d(i)]);
            endparfor
        endif
            
        x1 = d;
        
        if (p < cfg.epsResCorr)
            break
        endif
    endfor
    
    ## compute enclosure y+Y1 of the residuum b-A*x1 of the approximation x1
    ## and initialize x:= (R+R2)*(b-A*x1), C:= I-(R+R2)*A   
    
    ## y = mid (b - A * x1)
    y = mid ([subsref(b, s_idx), A] * [1; -x1]);
    
    ## Y1 = b - A * x1 - y
    Y1 = [subsref(b, s_idx), A, y] * [1; -x1; -1];
    
    ## x = R * y + R2 * y + R * Y1 + R2 * Y1
    x = [R, R2, R, R2] * [y; y; Y1; Y1];
    
    ## Verifying solution x1 + x ...
    if (all (x.inf == 0 & x.sup == 0))
        ## exact solution! (however, not necessarily unique!)
        subsasgn (result, s_idx, x1);
        continue
    endif
    
    if (not (C_computed))
        ## C = I - R * A - R2 * A (lazy computation)
        C = [eye(rows (R)), R, R2] * [eye(rows (R)); -A; -A];
        C_computed = true ();
    endif
    
    [x, verified] = verify_and_refine (x, C, cfg, "tight");
    if (not (verified))
        error ("Verification failed")
    endif
    
    ## The exact solution lies x1 + x
    subsasgn (result, s_idx, x1 + x);
endfor

endfunction

## Perform an epsilon inflation
function y = blow (x, eps)
    y = nextout ((1 + eps) .* x - eps .* x);
endfunction

## Compute component-wise the maximum relative error
function e = relative_error (new, old)
    nonzero = old ~= 0 & (1e6 * abs (new) >= abs (old));
    e = max (abs ((new (nonzero) - old (nonzero)) ./ old (nonzero)));
    
    if (isempty (e))
        e = 0;
    endif
endfunction

## Interval iteration until inclusion is obtained (or max. iteration count)
function [x, verified] = verify_and_refine (x0, C, cfg, accuracy)
    verified = false ();
    x = x0;
    for p = 1 : cfg.maxIterVer
        y = blow (x, cfg.epsVer); # epsilon inflation
        x = x0 + mtimes (C, y, accuracy); # new iterate
        
        verified = all (all (subset (x, y)));
        if (verified)
            break
        endif
    endfor
    
    if (verified)
        ## Iterative refinement
        for p = 1 : cfg.maxIterRef
            y = x;
            x = intersect (x0 + mtimes (C, x, accuracy), x);
            
            if (p == cfg.maxIterRef)
                break
            endif
            
            distance = max (abs (x.inf - y.inf), ...
                            abs (x.sup - y.sup));
            if (max (max (distance)) <= cfg.epsRef)
                break
            endif
        endfor
    endif
endfunction

%!test "unique solution";
%!  assert (infsup ([1, 0; 0, 2]) \ [2, 0; 0, 4] == [2, 0; 0 2]);
%!test "no solution";
%!  assert (all (isempty (infsup ([1, 0; 2, 0]) \ [3; 0])));
%!test "many solutions";
%!  assert (infsup ([1, 0; 2, 0]) \ [4; 8] == infsup ([4; -inf], [4; inf]));
%!assert (all (subset (infsup ([2, -1; -1, 2], [4, 1; 1, 4]) \ infsup ([-3; .8], [3; .8]), infsup ([-2.3; -1.1], [2.3; 1.6]))));