This file is indexed.

/usr/share/octave/packages/interval-1.4.1/@infsup/nthroot.m is in octave-interval 1.4.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
## Copyright 2015-2016 Oliver Heimlich
##
## This program is free software; you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation; either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @documentencoding UTF-8
## @defmethod {@@infsup} nthroot (@var{X}, @var{N})
## 
## Compute the real n-th root of @var{X}.
##
## Accuracy: The result is a valid enclosure.  The result is a tight
## enclosure for @var{n} ≥ -2.  The result also is a tight enclosure if the
## reciprocal of @var{n} can be computed exactly in double-precision.
## @seealso{@@infsup/pown, @@infsup/pownrev, @@infsup/realsqrt, @@infsup/cbrt}
## @end defmethod

## Author: Oliver Heimlich
## Keywords: interval
## Created: 2015-02-20

function result = nthroot (x, n)

if (nargin ~= 2)
    print_usage ();
    return
endif
if (not (isa (x, "infsup")))
    x = infsup (x);
endif

if (not (isnumeric (n)) || fix (n) ~= n)
    error ("interval:InvalidOperand", "nthroot: degree is not an integer");
endif

even = mod (n, 2) == 0;
if (even)
    x = intersect (x, infsup (0, inf));
endif

switch sign (n)
    case +1
        emptyresult = isempty (x);
        l = mpfr_function_d ('nthroot', -inf, x.inf, n);
        u = mpfr_function_d ('nthroot', +inf, x.sup, n);
        
        l (emptyresult) = inf;
        u (emptyresult) = -inf;
        
        result = infsup (l, u);
        
    case -1
        emptyresult = isempty (x) ...
            | (x.sup <= 0 & even) | (x.inf == 0 & x.sup == 0);
        
        if (even)
            l = zeros (size (x.inf));
            u = inf (size (x.inf));
            
            select = x.inf > 0 & isfinite (x.inf);
            if (any (any (select)))
                u (select) = invrootrounded (x.inf (select), -n, +inf);
            endif
            select = x.sup > 0 & isfinite (x.sup);
            if (any (any (select)))
                l (select) = invrootrounded (x.sup (select), -n, -inf);
            endif
            
            l (emptyresult) = inf;
            u (emptyresult) = -inf;
            
            result = infsup (l, u);
        else # uneven
            l = zeros (size (x.inf));
            u = inf (size (x.inf));
            
            select = x.inf > 0 & isfinite (x.inf);
            if (any (any (select)))
                u (select) = invrootrounded (x.inf (select), -n, +inf);
            endif
            select = x.sup > 0 & isfinite (x.sup);
            if (any (any (select)))
                l (select) = invrootrounded (x.sup (select), -n, -inf);
            endif
            
            notpositive = x.sup <= 0;
            l (emptyresult | notpositive) = inf;
            u (emptyresult | notpositive) = -inf;
            
            result = infsup (l, u); # this is only the positive part
            
            l = zeros (size (x.inf));
            u = inf (size (x.inf));
            
            select = x.sup < 0 & isfinite (x.sup);
            if (any (any (select)))
                u (select) = invrootrounded (-x.sup (select), -n, +inf);
            endif
            select = x.inf < 0 & isfinite (x.inf);
            if (any (any (select)))
                l (select) = invrootrounded (-x.inf (select), -n, -inf);
            endif
            
            notnegative = x.inf >= 0;
            l (emptyresult | notnegative) = inf;
            u (emptyresult | notnegative) = -inf;
            
            result = union (result, infsup (-u, -l));
        endif
    
    otherwise
        error ("interval:InvalidOperand", "nthroot: degree must not be zero");
endswitch

endfunction

function x = invrootrounded (z, n, direction)
## We cannot compute the inverse of the n-th root of z in a single step.
## Thus, we use three different ways for computation, each of which has an
## intermediate result with possible rounding errors and can't guarantee to
## produce a correctly rounded result.
## When we finally merge the 3 results, it is still not guaranteed to be
## correctly rounded. However, chances are good that one of the three ways
## produced a “relatively good” result.
##
## x1:  z ^ (- 1 / n)
## x2:  1 / root (z, n)
## x3:  root (1 / z, n)

inv_n = 1 ./ infsup (n);
if (direction > 0)
    x1 = z;
    select = z > 1;
    x1 (select) = mpfr_function_d ('pow', direction, z (select), -inv_n.inf);
    select = z < 1;
    x1 (select) = mpfr_function_d ('pow', direction, z (select), -inv_n.sup);
else
    x1 = z;
    select = z > 1;
    x1 (select) = mpfr_function_d ('pow', direction, z (select), -inv_n.sup);
    select = z < 1;
    x1 (select) = mpfr_function_d ('pow', direction, z (select), -inv_n.inf);
endif

if (issingleton (inv_n))
    ## We are lucky: The result is correctly rounded
    x = x1;
    return
endif

x2 = mpfr_function_d ('rdivide', direction, 1, ...
        mpfr_function_d ('nthroot', -direction, z, n));
x3 = mpfr_function_d ('nthroot', direction, ...
        mpfr_function_d ('rdivide', direction, 1, z), n);

## Choose the most accurate result
if (direction > 0)
    x = min (min (x1, x2), x3);
else
    x = max (max (x1, x2), x3);
endif

endfunction

%!assert (nthroot (infsup (25, 36), 2) == infsup (5, 6));