/usr/share/octave/packages/tsa-4.3.3/doc-cache is in octave-tsa 4.3.3-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588  | # doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 55
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
aar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2191
 Calculates adaptive autoregressive (AAR) and adaptive autoregressive moving average estimates (AARMA)
 of real-valued data series using Kalman filter algorithm.
 [a,e,REV] = aar(y, mode, MOP, UC, a0, A, W, V); 
 The AAR process is described as following  
       y(k) - a(k,1)*y(t-1) -...- a(k,p)*y(t-p) = e(k);
 The AARMA process is described as following  
       y(k) - a(k,1)*y(t-1) -...- a(k,p)*y(t-p) = e(k) + b(k,1)*e(t-1) + ... + b(k,q)*e(t-q);
 Input:
       y       Signal (AR-Process)
       Mode    is a two-element vector [aMode, vMode], 
               aMode determines 1 (out of 12) methods for updating the co-variance matrix (see also [1])
               vMode determines 1 (out of 7) methods for estimating the innovation variance (see also [1])
               aMode=1, vmode=2 is the RLS algorithm as used in [2]
               aMode=-1, LMS algorithm (signal normalized)
               aMode=-2, LMS algorithm with adaptive normalization  
                                     
       MOP     model order, default [10,0] 
               MOP=[p]         AAR(p) model. p AR parameters
               MOP=[p,q]       AARMA(p,q) model, p AR parameters and q MA coefficients
       UC      Update Coefficient, default 0
       a0      Initial AAR parameters [a(0,1), a(0,2), ..., a(0,p),b(0,1),b(0,2), ..., b(0,q)]
                (row vector with p+q elements, default zeros(1,p) )
       A       Initial Covariance matrix (positive definite pxp-matrix, default eye(p))
	W	system noise (required for aMode==0)
	V	observation noise (required for vMode==0)
      
 Output:
       a       AAR(MA) estimates [a(k,1), a(k,2), ..., a(k,p),b(k,1),b(k,2), ..., b(k,q]
       e       error process (Adaptively filtered process)
       REV     relative error variance MSE/MSY
 Hint:
 The mean square (prediction) error of different variants is useful for determining the free parameters (Mode, MOP, UC) 
 REFERENCE(S): 
 [1] A. Schloegl (2000), The electroencephalogram and the adaptive autoregressive model: theory and applications. 
     ISBN 3-8265-7640-3 Shaker Verlag, Aachen, Germany. 
 More references can be found at 
     http://pub.ist.ac.at/~schloegl/publications/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Calculates adaptive autoregressive (AAR) and adaptive autoregressive moving ave
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
aarmam
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1372
 Estimating Adaptive AutoRegressive-Moving-Average-and-mean model (includes mean term) 
 !! This function is obsolete and is replaced by AMARMA
 [z,E,REV,ESU,V,Z,SPUR] = aarmam(y, mode, MOP, UC, z0, Z0, V0, W); 
 Estimates AAR parameters with Kalman filter algorithm
 	y(t) = sum_i(a_i(t)*y(t-i)) + m(t) + e(t) + sum_i(b_i(t)*e(t-i))
 State space model
	z(t) = G*z(t-1) + w(t)    w(t)=N(0,W) 
	y(t) = H*z(t)   + v(t)	  v(t)=N(0,V)	
 G = I, 
 z = [m(t),a_1(t-1),..,a_p(t-p),b_1(t-1),...,b_q(t-q)];
 H = [1,y(t-1),..,y(t-p),e(t-1),...,e(t-q)];
 W = E{(z(t)-G*z(t-1))*(z(t)-G*z(t-1))'}
 V = E{(y(t)-H*z(t-1))*(y(t)-H*z(t-1))'}
 Input:
       y	Signal (AR-Process)
       Mode	determines the type of algorithm
       MOP     Model order [m,p,q], default [0,10,0]
			m=1 includes the mean term, m=0 does not. 
			p and q must be positive integers
			it is recommended to set q=0. 
	UC	Update Coefficient, default 0
	z0	Initial state vector
	Z0	Initial Covariance matrix
      
 Output:
	z	AR-Parameter
	E	error process (Adaptively filtered process)
       REV     relative error variance MSE/MSY
 REFERENCE(S): 
 [1] A. Schloegl (2000), The electroencephalogram and the adaptive autoregressive model: theory and applications. 
     ISBN 3-8265-7640-3 Shaker Verlag, Aachen, Germany. 
 More references can be found at 
     http://pub.ist.ac.at/~schloegl/publications/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Estimating Adaptive AutoRegressive-Moving-Average-and-mean model (includes mean
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ac2poly
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 179
 converts the autocorrelation sequence into an AR polynomial
 [A,Efinal] = ac2poly(r)
 see also ACOVF ACORF AR2RC RC2AR DURLEV AC2POLY, POLY2RC, RC2POLY, RC2AC, AC2RC, POLY2AC
 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 converts the autocorrelation sequence into an AR polynomial
 [A,Efinal] = ac2po
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ac2rc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 182
 converts the autocorrelation function into reflection coefficients 
 [RC,r0] = ac2rc(r)
 see also ACOVF ACORF AR2RC RC2AR DURLEV AC2POLY, POLY2RC, RC2POLY, RC2AC, AC2RC, POLY2AC
 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 converts the autocorrelation function into reflection coefficients 
 [RC,r0] = 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acorf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1078
  Calculates autocorrelations for multiple data series.
  Missing values in Z (NaN) are considered. 
  Also calculates Ljung-Box Q stats and p-values.
    [AutoCorr,stderr,lpq,qpval] = acorf(Z,N);
  If mean should be removed use
    [AutoCorr,stderr,lpq,qpval] = acorf(detrend(Z',0)',N);
  If trend should be removed use
    [AutoCorr,stderr,lpq,qpval] = acorf(detrend(Z')',N);
 INPUT
  Z	is data series for which autocorrelations are required
       each in a row
  N	maximum lag
 OUTPUT
  AutoCorr nr x N matrix of autocorrelations
  stderr   nr x N matrix of (approx) std errors
  lpq      nr x M matrix of Ljung-Box Q stats
  qpval    nr x N matrix of p-values on Q stats
   
 All input and output parameters are organized in rows, one row 
 corresponds to one series
 REFERENCES:
  S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
  J.S. Bendat and A.G.Persol "Random Data: Analysis and Measurement procedures", Wiley, 1986.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
  Calculates autocorrelations for multiple data series.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
acovf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 827
 ACOVF estimates autocovariance function (not normalized)
 NaN's are interpreted as missing values. 
 [ACF,NN] = acovf(Z,MAXLAG,Mode);
 Input:
  Z    Signal (one channel per row);
  MAXLAG  maximum lag
  Mode	'biased'  : normalizes with N [default]
	'unbiased': normalizes with N-lag
	'coeff'	  : normalizes such that lag 0 is 1	
        others	  : no normalization
 Output:
  ACF autocovariance function
  NN  number of valid elements 
 REFERENCES:
  A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall, 1975.
  S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
  J.S. Bendat and A.G.Persol "Random Data: Analysis and Measurement procedures", Wiley, 1986.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 ACOVF estimates autocovariance function (not normalized)
 NaN's are interpreted
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
adim
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 675
 ADIM adaptive information matrix. Estimates the inverse
   correlation matrix in an adaptive way. 
 [IR, CC] = adim(U, UC [, IR0 [, CC0]]); 
   U 	input data  
   UC 	update coefficient 0 < UC << 1
   IR0	initial information matrix
   CC0 initial correlation matrix
   IR	information matrix (inverse correlation matrix)
   CC  correlation matrix
 	
  The algorithm uses the Matrix Inversion Lemma, also known as 
     "Woodbury's identity", to obtain a recursive algorithm.  
     IR*CC - UC*I should be approx. zero. 
 Reference(s):
 [1] S. Haykin. Adaptive Filter Theory, Prentice Hall, Upper Saddle River, NJ, USA 
     pp. 565-567, Equ. (13.16), 1996.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
 ADIM adaptive information matrix.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
amarma
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2356
 Adaptive Mean-AutoRegressive-Moving-Average model estimation
 [z,e,ESU,REV,V,Z,SPUR] = amarma(y, mode, MOP, UC, z0, Z0, V0, W); 
 Estimates model parameters (mean and AR) with Kalman filter algorithm
 	y(t) = sum_i(a(i,t)*y(t-i)) + mu(t) + e(t)
 or the more general adaptive mean-autoregressive-moving-avarage parameters
 	y(t) = sum_i(a(i,t)*y(t-i)) + mu(t) + e(t) + sum_i(b(i,t)*e(t-i)) 
 State space model:
	z(t)=G*z(t-1) + w(t)      w(t)=N(0,W) 
	y(t)=H*z(t)   + v(t)	  v(t)=N(0,V)	
 G = I, (identity matrix)
 z = [mu(t)/(1-sum_i(a(i,t))),a_1(t-1),..,a_p(t-p),b_1(t-1),...,b_q(t-q)];
 H = [1,y(t-1),..,y(t-p),e(t-1),...,e(t-q)];
 W = E{(z(t)-G*z(t-1))*(z(t)-G*z(t-1))'}
 V = E{(y(t)-H*z(t-1))*(y(t)-H*z(t-1))'}
 v = e
 Input:
       y	Signal (AR-Process)
       Mode
	    [0,0] uses V0 and W  
       MOP     Model order [m,p,q], default [0,10,0] 
		   m=1 includes the mean term, m=0 does not. 
		   p and q must be positive integers
		   it is recommended to set q=0 (i.e. no moving average part)
		   because the optimization problem for ARMA models is 
		   non-linear and can have local optima. 
	UC	Update Coefficient, default 0
	z0	Initial state vector
	Z0	Initial Covariance matrix
      
 Output:
	z	mean-autoregressive-moving-average-parameter
               mu(t)  = z(t,1:m)	adaptive mean
               a(t,:) = z(t,m+[1:p])	adaptive autoregressive parameters
               b(t,:) = z(t,m+p+[1:q]) adaptive moving average parameters
	e	error process (Adaptively filtered process)
       REV     relative error variance MSE/MSY
 see also: AAR
 REFERENCE(S): 
 [1] A. Schlögl (2000), The electroencephalogram and the adaptive autoregressive model: theory and applications. 
     ISBN 3-8265-7640-3 Shaker Verlag, Aachen, Germany. 
 [2] Schlögl A, Lee FY, Bischof H, Pfurtscheller G
     Characterization of Four-Class Motor Imagery EEG Data for the BCI-Competition 2005.
     Journal of neural engineering 2 (2005) 4, S. L14-L22
 [3] A. Schlögl , J. Fortin, W. Habenbacher, M. Akay.
     Adaptive mean and trend removal of heart rate variability using Kalman filtering
     Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 
     25-28 Oct. 2001, Paper #1383, ISBN 0-7803-7213-1.
 More references can be found at 
     http://pub.ist.ac.at/~schloegl/publications/
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Adaptive Mean-AutoRegressive-Moving-Average model estimation
 [z,e,ESU,REV,V,Z,
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
ar2poly
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 603
 converts autoregressive parameters into AR polymials 
 Multiple polynomials can be converted. 
 function  [A] = ar2poly(AR);
  INPUT:
 AR     AR parameters, each row represents one set of AR parameters
  OUTPUT
 A     denominator polynom
 see also ACOVF ACORF DURLEV RC2AR FILTER FREQZ ZPLANE
 
 REFERENCES:
  P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 converts autoregressive parameters into AR polymials 
 Multiple polynomials can
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ar2rc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1007
 converts autoregressive parameters into reflection coefficients 
 with the Durbin-Levinson recursion for multiple channels
 function  [AR,RC,PE] = ar2rc(AR);
 function  [MX,PE] = ar2rc(AR);
  INPUT:
 AR    autoregressive model parameter	
  OUTPUT
 AR    autoregressive model parameter	
 RC    reflection coefficients (= -PARCOR coefficients)
 PE    remaining error variance (relative to PE(1)=1)
 MX    transformation matrix between ARP and RC (Attention: needs O(p^2) memory)
        AR = MX(:,K*(K-1)/2+(1:K));
        RC = MX(:,(1:K).*(2:K+1)/2);
 All input and output parameters are organized in rows, one row 
 corresponds to the parameters of one channel
 see also ACOVF ACORF DURLEV RC2AR 
 
 REFERENCES:
  P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 converts autoregressive parameters into reflection coefficients 
 with the Durb
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
ar_spa
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1259
 AR_SPA decomposes an AR-spectrum into its compontents 
 [w,A,B,R,P,F,ip] = ar_spa(AR,fs,E);
  INPUT:
 AR   autoregressive parameters
 fs    sampling rate, provide w and B in [Hz], if not given the result is in radians 
 E     noise level (mean square),  gives A and F in units of E, if not given as relative amplitude
  OUTPUT
 w	center frequency
 A     Amplitude
 B     bandwidth
       - less important output parameters - 
 R	residual
 P	poles
 ip	number of complex conjugate poles
 real(F)     	power, absolute values are obtained by multiplying with noise variance E(p+1) 
 imag(F)	assymetry, - " -
 All input and output parameters are organized in rows, one row 
 corresponds to the parameters of one channel
 see also ACOVF ACORF DURLEV IDURLEV PARCOR YUWA 
 
 REFERENCES:
 [1] Zetterberg L.H. (1969) Estimation of parameter for linear difference equation with application to EEG analysis. Math. Biosci., 5, 227-275. 
 [2] Isaksson A. and Wennberg, A. (1975) Visual evaluation and computer analysis of the EEG - A comparison. Electroenceph. clin. Neurophysiol., 38: 79-86.
 [3] G. Florian and G. Pfurtscheller (1994) Autoregressive model based spectral analysis with application to EEG. IIG - Report Series, University of Technolgy Graz, Austria.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 AR_SPA decomposes an AR-spectrum into its compontents 
 [w,A,B,R,P,F,ip] = ar_s
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
arcext
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 738
 ARCEXT extracts AR and RC of order P from Matrix MX
 function  [AR,RC] = arcext(MX,P);
  INPUT:
 MX 	AR and RC matrix calculated by durlev 
 P 	model order (default maximum possible)
  OUTPUT
 AR    autoregressive model parameter	
 RC    reflection coefficients (= -PARCOR coefficients)
 All input and output parameters are organized in rows, one row 
 corresponds to the parameters of one channel
 see also ACOVF ACORF DURLEV 
 
 REFERENCES:
  P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 ARCEXT extracts AR and RC of order P from Matrix MX
 function  [AR,RC] = arcext
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
arfit2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1227
 ARFIT2 estimates multivariate autoregressive parameters
 of the MVAR process Y
   Y(t,:)' = w' + A1*Y(t-1,:)' + ... + Ap*Y(t-p,:)' + x(t,:)'
 ARFIT2 uses the Nutall-Strand method (multivariate Burg algorithm) 
 which provides better estimates the ARFIT [1], and uses the 
 same arguments. Moreover, ARFIT2 is faster and can deal with 
 missing values encoded as NaNs. 
 [w, A, C, sbc, fpe] = arfit2(v, pmin, pmax, selector, no_const)
 INPUT: 
  v		data - each channel in a column
  pmin, pmax 	minimum and maximum model order
  selector	'fpe' or 'sbc' [default] 
  no_const	'zero' indicates no bias/offset need to be estimated 
		in this case is w = [0, 0, ..., 0]'; 
 OUTPUT: 
  w		mean of innovation noise
  A		[A1,A2,...,Ap] MVAR estimates	
  C		covariance matrix of innovation noise
  sbc, fpe	criteria for model order selection 
 see also: ARFIT, MVAR
 REFERENCES:
  [1] A. Schloegl, 2006, Comparison of Multivariate Autoregressive Estimators.
       Signal processing, p. 2426-9.
  [2] T. Schneider and A. Neumaier, 2001. 
	Algorithm 808: ARFIT-a Matlab package for the estimation of parameters and eigenmodes 
	of multivariate autoregressive models. ACM-Transactions on Mathematical Software. 27, (Mar.), 58-65.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
 ARFIT2 estimates multivariate autoregressive parameters
 of the MVAR process Y
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
biacovf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 228
 BiAutoCovariance function 
 [BiACF] = biacovf(Z,N);
 Input:	Z    Signal
		N  # of coefficients
 Output:	BIACF bi-autocorrelation function (joint cumulant 3rd order
 Output:	ACF   covariance function (joint cumulant 2nd order)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
 BiAutoCovariance function 
 [BiACF] = biacovf(Z,N);
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bisdemo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
 BISDEMO (script) Shows BISPECTRUM of eeg8s.mat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
 BISDEMO (script) Shows BISPECTRUM of eeg8s.mat
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
bispec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 382
 Calculates Bispectrum 
 [BISPEC] = bispec(Z,N);
 Input:	Z    Signal
		N  # of coefficients
 Output:	BiACF  bi-autocorrelation function = 3rd order cumulant
		BISPEC Bi-spectrum 
 Reference(s):
 C.L. Nikias and A.P. Petropulu "Higher-Order Spectra Analysis" Prentice Hall, 1993.
 M.B. Priestley, "Non-linear and Non-stationary Time series Analysis", Academic Press, London, 1988.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
 Calculates Bispectrum 
 [BISPEC] = bispec(Z,N);
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
content
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1816
 Time Series Analysis (Ver 3.10)
 Schloegl A. (1996-2003,2008) Time Series Analysis - A Toolbox for the use with Matlab. 
 WWW: http://pub.ist.ac.at/~schloegl/matlab/tsa/
	$Id: content.m 12766 2015-04-02 10:00:34Z schloegl $
	Copyright (C) 1996-2003,2008 by Alois Schloegl <alois.schloegl@gmail.com>
  Time Series Analysis - a toolbox for the use with Matlab
   aar		adaptive autoregressive estimator 
   acovf       (*) Autocovariance function
   acorf (acf)	(*) autocorrelation function	
   pacf	(*) partial autocorrelation function, includes signifcance test and confidence interval
   parcor	(*) partial autocorrelation function
   biacovf	biautocovariance function (3rd order cumulant)
   bispec	Bi-spectrum 
   durlev      (*) solves Yule-Walker equation - converts ACOVF into AR parameters
   lattice     (*) calcultes AR parameters with lattice method
   lpc		(*) calculates the prediction coefficients form a given time series
   invest0	(*) a prior investigation (used by invest1)
   invest1	(*) investigates signal (useful for 1st evaluation of the data)
   selmo	(*) Select Order of Autoregressive model using different criteria
   histo	(*) histogram
   hup     	(*) test Hurwitz polynomials
   ucp     	(*) test Unit Circle Polynomials   
   y2res	(*) computes mean, variance, skewness, kurtosis, entropy, etc. from data series 
   ar_spa	(*) spectral analysis based on the autoregressive model
   detrend 	(*) removes trend, can handle missing values, non-equidistant sampled data       
   flix	floating index, interpolates data for non-interger indices
   quantiles   calculates quantiles 
 Multivariate analysis (planned in future)
   mvar	multivariate (vector) autoregressive estimation 
   mvfilter	multivariate filter
   arfit2	provides compatibility to ARFIT [Schneider and Neumaier, 2001]
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
 Time Series Analysis (Ver 3.10)
 Schloegl A.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
contents
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5883
 Time Series Analysis - A toolbox for the use with Matlab and Octave. 
 $Id: contents.m 12766 2015-04-02 10:00:34Z schloegl $
 Copyright (C) 1996-2004,2008 by Alois Schloegl <alois.schloegl@gmail.com>
 WWW: http://pub.ist.ac.at/~schloegl/matlab/tsa/
    This program is free software: you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation, either version 3 of the License, or
    (at your option) any later version.
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    You should have received a copy of the GNU General Public License
    along with this program.  If not, see <http://www.gnu.org/licenses/>.
 
  Time Series Analysis - a toolbox for the use with Matlab
   aar		adaptive autoregressive estimator 
   acovf       (*) Autocovariance function
   acorf (acf)	(*) autocorrelation function	
   pacf	(*) partial autocorrelation function, includes signifcance test and confidence interval
   parcor	(*) partial autocorrelation function
   biacovf	biautocovariance function (3rd order cumulant)
   bispec	Bi-spectrum 
   durlev      (*) solves Yule-Walker equation - converts ACOVF into AR parameters
   lattice     (*) calcultes AR parameters with lattice method
   lpc		(*) calculates the prediction coefficients form a given time series
   invest0	(*) a prior investigation (used by invest1)
   invest1	(*) investigates signal (useful for 1st evaluation of the data)
   rmle        AR estimation using recursive maximum likelihood function 
   selmo	(*) Select Order of Autoregressive model using different criteria
   histo	(*) histogram
   hup     	(*) test Hurwitz polynomials
   ucp     	(*) test Unit Circle Polynomials   
   y2res	(*) computes mean, variance, skewness, kurtosis, entropy, etc. from data series 
   ar_spa	(*) spectral analysis based on the autoregressive model
   detrend 	(*) removes trend, can handle missing values, non-equidistant sampled data       
   flix	floating index, interpolates data for non-interger indices
 Multivariate analysis 
   adim	adaptive information matrix (inverse correlation matrix) 
   mvar	multivariate (vector) autoregressive estimation 
   mvaar       multivariate adaptvie autoregressive estimation using Kalman filtering
   mvfilter	multivariate filter
   mvfreqz	multivariate spectra 	
   arfit2	provides compatibility to ARFIT [Schneider and Neumaier, 2001]
   	
  Conversions between Autocorrelation (AC), Autoregressive parameters (AR), 
             	prediction polynom (POLY) and Reflection coefficient (RC)  
   ac2poly 	(*) transforms autocorrelation into prediction polynom
   ac2rc   	(*) transforms autocorrelation into reflexion coefficients
   ar2rc	(*) transforms autoregressive parameters into reflection coefficients  
   rc2ar	(*) transforms reflection coefficients into autoregressive parameters
   poly2ac 	(*) transforms polynom to autocorrelation
   poly2ar 	(*) transforms polynom to AR 
   poly2rc 	(*) 
   rc2ac 	(*) 
   rc2poly 	(*) 
   ar2poly 	(*) 
   
 Utility functions 
   sinvest1	shows the parameter calculated by INVEST1
 Test suites
   tsademo		demonstrates INVEST1 on EEG data
   invfdemo		demonstration of matched, inverse filtering
   bisdemo		demonstrates bispectral estimation
 (*) indicates univariate analysis of multiple data series (each in a row) can be processed.
 (-) indicates that these functions will be removed in future 
 REFERENCES (sources):
  http://www.itl.nist.gov/
  http://mathworld.wolfram.com/
  P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  O.   Foellinger "Lineare Abtastsysteme", Oldenburg Verlag, Muenchen, 1986.
  F.   Gausch "Systemtechnik", Textbook, University of Technology Graz, 1993. 
  M.S. Grewal and A.P. Andrews "Kalman Filtering" Prentice Hall, 1993. 
  S.   Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
  E.I. Jury "Theory and Application of the z-Transform Method", Robert E. Krieger Publishing Co., 1973. 
  M.S. Kay "Modern Spectal Estimation" Prentice Hall, 1988. 
  Ch.  Langraf and G. Schneider "Elemente der Regeltechnik", Springer Verlag, 1970.
  S.L. Marple "Digital Spetral Analysis with Applications" Prentice Hall, 1987.
  C.L. Nikias and A.P. Petropulu "Higher-Order Spectra Analysis" Prentice Hall, 1993.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  T. Schneider and A. Neumaier "Algorithm 808: ARFIT - a matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models" 
               ACM Transactions on Mathematical software, 27(Mar), 58-65.
  C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
 
 
 REFERENCES (applications):
 [1] A. Schlögl, B. Kemp, T. Penzel, D. Kunz, S.-L. Himanen,A. Värri, G. Dorffner, G. Pfurtscheller.
     Quality Control of polysomnographic Sleep Data by Histogram and Entropy Analysis. 
     Clin. Neurophysiol. 1999, Dec; 110(12): 2165 - 2170.
 [2] Penzel T, Kemp B, Klösch G, Schlögl A, Hasan J, Varri A, Korhonen I.
     Acquisition of biomedical signals databases
     IEEE Engineering in Medicine and Biology Magazine 2001, 20(3): 25-32
 [3] Alois Schlögl (2000)
     The electroencephalogram and the adaptive autoregressive model: theory and applications
     Shaker Verlag, Aachen, Germany,(ISBN3-8265-7640-3). 
 Features:
 - Multiple Signal Processing
 - Efficient algorithms 
 - Model order selection tools
 - higher (3rd) order analysis
 - Maximum entropy spectral estimation
 - can deal with missing values (NaN's)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 Time Series Analysis - A toolbox for the use with Matlab and Octave.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
covm
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1182
 COVM generates covariance matrix
 X and Y can contain missing values encoded with NaN.
 NaN's are skipped, NaN do not result in a NaN output. 
 The output gives NaN only if there are insufficient input data
 COVM(X,Mode);
      calculates the (auto-)correlation matrix of X
 COVM(X,Y,Mode);
      calculates the crosscorrelation between X and Y
 COVM(...,W);
	weighted crosscorrelation 
 Mode = 'M' minimum or standard mode [default]
 	C = X'*X; or X'*Y correlation matrix
 Mode = 'E' extended mode
 	C = [1 X]'*[1 X]; % l is a matching column of 1's
 	C is additive, i.e. it can be applied to subsequent blocks and summed up afterwards
 	the mean (or sum) is stored on the 1st row and column of C
 Mode = 'D' or 'D0' detrended mode
	the mean of X (and Y) is removed. If combined with extended mode (Mode='DE'), 
 	the mean (or sum) is stored in the 1st row and column of C. 
 	The default scaling is factor (N-1). 
 Mode = 'D1' is the same as 'D' but uses N for scaling. 
 C = covm(...); 
 	C is the scaled by N in Mode M and by (N-1) in mode D.
 [C,N] = covm(...);
	C is not scaled, provides the scaling factor N  
	C./N gives the scaled version. 
 see also: DECOVM, XCOVF
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 COVM generates covariance matrix
 X and Y can contain missing values encoded wi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
detrend
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 837
 DETREND removes the trend from data, NaN's are considered as missing values
 
 DETREND is fully compatible to previous Matlab and Octave DETREND with the following features added:
 - handles NaN's by assuming that these are missing values
 - handles unequally spaced data
 - second output parameter gives the trend of the data
 - compatible to Matlab and Octave 
 [...]=detrend([t,] X [,p])
	removes trend for unequally spaced data
	t represents the time points
	X(i) is the value at time t(i)
	p must be a scalar
 [...]=detrend(X,0)
 [...]=detrend(X,'constant')
	removes the mean
 [...]=detrend(X,p)
	removes polynomial of order p (default p=1)
 [...]=detrend(X,1) - default
 [...]=detrend(X,'linear')
	removes linear trend 
 [X,T]=detrend(...) 
 X is the detrended data
 T is the removed trend
 
 see also: SUMSKIPNAN, ZSCORE		
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 DETREND removes the trend from data, NaN's are considered as missing values
 
 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
durlev
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1241
 function  [AR,RC,PE] = durlev(ACF);
 function  [MX,PE] = durlev(ACF);
 estimates AR(p) model parameter by solving the
 Yule-Walker with the Durbin-Levinson recursion
 for multiple channels
  INPUT:
 ACF	Autocorrelation function from lag=[0:p]
  OUTPUT
 AR    autoregressive model parameter	
 RC    reflection coefficients (= -PARCOR coefficients)
 PE    remaining error variance
 MX    transformation matrix between ARP and RC (Attention: needs O(p^2) memory)
        AR(:,K) = MX(:,K*(K-1)/2+(1:K));
        RC(:,K) = MX(:,(1:K).*(2:K+1)/2);
 All input and output parameters are organized in rows, one row 
 corresponds to the parameters of one channel
 see also ACOVF ACORF AR2RC RC2AR LATTICE
 
 REFERENCES:
  Levinson N. (1947) "The Wiener RMS(root-mean-square) error criterion in filter design and prediction." J. Math. Phys., 25, pp.261-278.
  Durbin J. (1960) "The fitting of time series models." Rev. Int. Stat. Inst. vol 28., pp 233-244.
  P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 function  [AR,RC,PE] = durlev(ACF);
 function  [MX,PE] = durlev(ACF);
 estimate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
flag_implicit_samplerate
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
 The use of FLAG_IMPLICIT_SAMPLERATE is in experimental state. 
 FLAG_IMPLICIT_SAMPLERATE might even become obsolete.
 Do not use it. 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
 The use of FLAG_IMPLICIT_SAMPLERATE is in experimental state.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 22
flag_implicit_skip_nan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 938
 FLAG_IMPLICIT_SKIP_NAN sets and gets default mode for handling NaNs
	1 skips NaN's (the default mode if no mode is set)
 	0 NaNs are propagated; input NaN's give NaN's at the output
 
 FLAG = flag_implicit_skip_nan()
 	gets current mode
 flag_implicit_skip_nan(FLAG)
 sets mode 
 prevFLAG = flag_implicit_skip_nan(nextFLAG)
	gets previous set FLAG and sets FLAG for the future
 flag_implicit_skip_nan(prevFLAG)
	resets FLAG to previous mode
 It is used in: 
	SUMSKIPNAN, MEDIAN, QUANTILES, TRIMEAN
 and affects many other functions like: 
	CENTER, KURTOSIS, MAD, MEAN, MOMENT, RMS, SEM, SKEWNESS, 
	STATISTIC, STD, VAR, ZSCORE etc. 
 The mode is stored in the global variable FLAG_implicit_skip_nan
 It is recommended to use flag_implicit_skip_nan(1) as default and
 flag_implicit_skip_nan(0) should be used for exceptional cases only.
 This feature might disappear without further notice, so you should really not
 rely on it. 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 FLAG_IMPLICIT_SKIP_NAN sets and gets default mode for handling NaNs
	1 skips Na
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
flix
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 603
 floating point index - interpolates data in case of non-integer indices
 Y=flix(D,x)
   FLIX returns Y=D(x) if x is an integer 
   otherwise D(x) is interpolated from the neighbors D(ceil(x)) and D(floor(x)) 
 
 Applications: 
 (1)  discrete Dataseries can be upsampled to higher sampling rate   
 (2)  transformation of non-equidistant samples to equidistant samples
 (3)  [Q]=flix(sort(D),q*(length(D)+1)) calculates the q-quantile of data series D   
 FLIX(D,x) is the same as INTERP1(D,X,'linear'); Therefore, FLIX might
 become obsolete in future. 
 see also: HIST2RES, Y2RES, PLOTCDF, INTERP1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
 floating point index - interpolates data in case of non-integer indices
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
histo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 580
 HISTO calculates histogram for each column
 [H,X] = HISTO(Y,Mode)
 	   
   Mode
	'rows' : frequency of each row
	'1x'   : single bin-values 
	'nx'   : separate bin-values for each column
   X  are the bin-values 
   H  is the frequency of occurence of value X 
 HISTO(Y) with no output arguments:
	plots the histogram bar(X,H)
 more histogram-based results can be obtained by HIST2RES2  
 see also:  HISTO, HISTO2, HISTO3, HISTO4
 REFERENCE(S):
  C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 HISTO calculates histogram for each column
 [H,X] = HISTO(Y,Mode)
 	   
   Mode
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
histo2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1009
 HISTO2 calculates histogram for multiple columns with separate bin values 
    for each data column.
 R = HISTO2(Y)
 R = HISTO2(Y, W)
	Y	data
	W	weight vector containing weights of each sample, 
		number of rows of Y and W must match.
		default W=[] indicates that each sample is weighted with 1. 
 R = HISTO(...)            
 	R is 	a struct with th fields 
       R.X  	the bin-values, bin-values are computed separately for each 
		data column, thus R.X is a matrix, each column contains the 
		the bin values of for each data column, unused elements are indicated with NaN.
		In order to have common bin values, use HISTO3.  
       R.H  is the frequency of occurence of value X 
  	R.N  are the number of valid (not NaN) samples (i.e. sum of weights)
 more histogram-based results can be obtained by HIST2RES2  
 see also: HISTO, HISTO2, HISTO3, HISTO4
 REFERENCE(S):
  C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 HISTO2 calculates histogram for multiple columns with separate bin values 
    
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
histo3
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1266
 HISTO3 calculates histogram for multiple columns with common bin values 
    among all data columns, and can be useful for data compression. 
 R = HISTO3(Y)
 R = HISTO3(Y, W)
	Y	data
	W	weight vector containing weights of each sample, 
		number of rows of Y and W must match.
		default W=[] indicates that each sample is weighted with 1. 
 	R 	struct with these fields 
       R.X  	the bin-values, bin-values are equal for each channel
		thus R.X is a column vector. If bin values should 
		be computed separately for each data column, use HISTO2
       R.H  	is the frequency of occurence of value X 
  	R.N  	are the number of valid (not NaN) samples 
 Data compression can be performed in this way
   	[R,tix] = histo3(Y) 
      		is the compression step
	R.tix provides a compressed data representation. 
	R.compressionratio estimates the compression ratio
 	R.X(tix) and R.X(R.tix) 
		reconstruct the orginal signal (decompression) 
 The effort (in memory and speed) for compression is O(n*log(n)).
 The effort (in memory and speed) for decompression is O(n) only. 
 see also: HISTO, HISTO2, HISTO3, HISTO4
 REFERENCE(S):
  C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 HISTO3 calculates histogram for multiple columns with common bin values 
    am
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
histo4
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 965
 HISTO4 calculates histogram of multidimensional data samples 
   and supports data compression
 R = HISTO4(Y)
 R = HISTO4(Y, W)
	Y    data: on sample per row, each sample has with size(Y,2) elements 
	W    weights of each sample (default: [])
	     W = [] indicates that each sample has equal weight	
 	R is a struct with these fields: 
       R.X  are the bin-values 
       R.H  is the frequency of occurence of value X (weighted with W)
  	R.N  are the total number of samples (or sum of W)
 HISTO4 might be useful for data compression, because
 [R,tix] = histo4(Y) 
     	is the compression step
 R.X(tix,:) 
  	is the decompression step
 The effort (in memory and speed) for compression is O(n*log(n))
 The effort (in memory and speed) for decompression is only O(n)
 
 see also: HISTO, HISTO2, HISTO3, HISTO4
 REFERENCE(S):
  C.E. Shannon and W. Weaver 'The mathematical theory of communication' University of Illinois Press, Urbana 1949 (reprint 1963).
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 HISTO4 calculates histogram of multidimensional data samples 
   and supports d
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
hup
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 588
HUP(C)	tests if the polynomial C is a Hurwitz-Polynomial.
	It tests if all roots lie in the left half of the complex
	plane 
       B=hup(C) is the same as 
       B=all(real(roots(c))<0) but much faster.
	The Algorithm is based on the Routh-Scheme.
	C are the elements of the Polynomial
	C(1)*X^N + ... + C(N)*X + C(N+1).
       HUP2 works also for multiple polynomials, 
       each row a poly - Yet not tested
 REFERENCES:
  F. Gausch "Systemtechnik", Textbook, University of Technology Graz, 1993. 
  Ch. Langraf and G. Schneider "Elemente der Regeltechnik", Springer Verlag, 1970.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
HUP(C)	tests if the polynomial C is a Hurwitz-Polynomial.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
invest0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 842
 First Investigation of a signal (time series) - automated part
 [AutoCov,AutoCorr,ARPMX,E,ACFsd,NC]=invest0(Y,Pmax);
 [AutoCov,AutoCorr,ARPMX,E,ACFsd,NC]=invest0(AutoCov,Pmax,Mode);
 
 Y	time series
 Pmax	maximal order (optional)
 AutoCov	Autocorrelation 
 AutoCorr	normalized Autocorrelation
 PartACF	Partial Autocorrelation
 ARPMX     Autoregressive Parameter for order Pmax-1
 E	        Error function E(p)
 NC            Number of values (length-missing values)
 REFERENCES:
  P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  M.S. Grewal and A.P. Andrews "Kalman Filtering" Prentice Hall, 1993. 
  S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 First Investigation of a signal (time series) - automated part
 [AutoCov,AutoCo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
invest1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1306
 First Investigation of a signal (time series) - interactive
 [AutoCov,AutoCorr,ARPMX,E,CRITERIA,MOPS]=invest1(Y,Pmax,show);
 Y	time series
 Pmax	maximal order (optional)
 show  optional; if given the parameters are shown
 AutoCov	Autocorrelation 
 AutoCorr	normalized Autocorrelation
 PartACF	Partial Autocorrelation
 E	Error function E(p)
 CRITERIA curves of the various (see below) criteria, 
 MOPS=[optFPE optAIC optBIC optSBC optMDL optCAT optPHI];
      optimal model order according to various criteria
 FPE	Final Prediction Error (Kay, 1987)
 AIC	Akaike Information Criterion (Marple, 1987)
 BIC	Bayesian Akaike Information Criterion (Wei, 1994)
 SBC	Schwartz's Bayesian Criterion (Wei, 1994)
 MDL	Minimal Description length Criterion (Marple, 1987)
 CAT	Parzen's CAT Criterion (Wei, 1994)
 PHI	Phi criterion (Pukkila et al. 1988)
 minE		order where E is minimal
 REFERENCES:
  P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  S.   Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 First Investigation of a signal (time series) - interactive
 [AutoCov,AutoCorr,
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
invfdemo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
 invfdemo	demonstrates Inverse Filtering
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 41
 invfdemo	demonstrates Inverse Filtering
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lattice
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1531
 Estimates AR(p) model parameter with lattice algorithm (Burg 1968) 
 for multiple channels. 
 If you have the NaN-tools, LATTICE.M can handle missing values (NaN), 
 [...] = lattice(y [,Pmax [,Mode]]);
 [AR,RC,PE] = lattice(...);
 [MX,PE] = lattice(...);
  INPUT:
 y	signal (one per row), can contain missing values (encoded as NaN)
 Pmax	max. model order (default size(y,2)-1))
 Mode  'BURG' (default) Burg algorithm
	'GEOL' geometric lattice
  OUTPUT
 AR    autoregressive model parameter	
 RC    reflection coefficients (= -PARCOR coefficients)
 PE    remaining error variance
 MX    transformation matrix between ARP and RC (Attention: needs O(p^2) memory)
        AR(:,K) = MX(:, K*(K-1)/2+(1:K)); = MX(:,sum(1:K-1)+(1:K)); 
        RC(:,K) = MX(:,cumsum(1:K));      = MX(:,(1:K).*(2:K+1)/2);
 All input and output parameters are organized in rows, one row 
 corresponds to the parameters of one channel
 see also ACOVF ACORF AR2RC RC2AR DURLEV SUMSKIPNAN 
 
 REFERENCE(S):
  J.P. Burg, "Maximum Entropy Spectral Analysis" Proc. 37th Meeting of the Society of Exp. Geophysiscists, Oklahoma City, OK 1967
  J.P. Burg, "Maximum Entropy Spectral Analysis" PhD-thesis, Dept. of Geophysics, Stanford University, Stanford, CA. 1975.
  P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  S.   Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Estimates AR(p) model parameter with lattice algorithm (Burg 1968) 
 for multip
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
lpc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 759
 LPC Linear prediction coefficients 
 The Burg-method is used to estimate the prediction coefficients
 A = lpc(X [,P]) finds the coefficients  A=[ 1 A(2) ... A(N+1) ],
     	of an Pth order forward linear predictor
     
 	 Xp(n) = -A(2)*X(n-1) - A(3)*X(n-2) - ... - A(N+1)*X(n-P)
	    
 	such that the sum of the squares of the errors
		
       err(n) = X(n) - Xp(n)
	       
	is minimized.  X can be a vector or a matrix.  If X is a matrix
       containing a separate signal in each column, LPC returns a model
	estimate for each column in the rows of A. N specifies the order
	of the polynomial A(z).
				       
	If you do not specify a value for P, LPC uses a default P = length(X)-1.
 see also ACOVF ACORF AR2POLY RC2AR DURLEV SUMSKIPNAN LATTICE 
 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 LPC Linear prediction coefficients 
 The Burg-method is used to estimate the pr
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
mvaar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 784
 Multivariate (Vector) adaptive AR estimation base on a multidimensional
 Kalman filer algorithm. A standard VAR model (A0=I) is implemented. The 
 state vector is defined as X=(A1|A2...|Ap) and x=vec(X')
 [x,e,Kalman,Q2] = mvaar(y,p,UC,mode,Kalman)
 The standard MVAR model is defined as:
		y(n)-A1(n)*y(n-1)-...-Ap(n)*y(n-p)=e(n)
	The dimension of y(n) equals s 
	
	Input Parameters:
 		y			Observed data or signal 
 		p			prescribed maximum model order (default 1)
		UC			update coefficient	(default 0.001)
		mode	 	update method of the process noise covariance matrix 0...4 ^
					correspond to S0...S4 (default 0)
	Output Parameters
		e			prediction error of dimension s
		x			state vector of dimension s*s*p
		Q2			measurement noise covariance matrix of dimension s x s
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Multivariate (Vector) adaptive AR estimation base on a multidimensional
 Kalman
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
mvar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3018
 MVAR estimates parameters of the Multi-Variate AutoRegressive model 
    Y(t) = Y(t-1) * A1 + ... + Y(t-p) * Ap + X(t);  
 whereas
    Y(t) is a row vecter with M elements Y(t) = y(t,1:M) 
 Several estimation algorithms are implemented, all estimators 
 can handle data with missing values encoded as NaNs.  
 	[AR,RC,PE] = mvar(Y, p);
 	[AR,RC,PE] = mvar(Y, p, Mode);
 
 with 
       AR = [A1, ..., Ap];
 INPUT:
  Y	 Multivariate data series 
  p     Model order
  Mode	 determines estimation algorithm 
 OUTPUT:
  AR    multivariate autoregressive model parameter
  RC    reflection coefficients (= -PARCOR coefficients)
  PE    remaining error variances for increasing model order
	   PE(:,p*M+[1:M]) is the residual variance for model order p
 All input and output parameters are organized in columns, one column 
 corresponds to the parameters of one channel.
 Mode determines estimation algorithm. 
  1:  Correlation Function Estimation method using biased correlation function estimation method
   		also called the 'multichannel Yule-Walker' [1,2] 
  6:  Correlation Function Estimation method using unbiased correlation function estimation method
  2:  Partial Correlation Estimation: Vieira-Morf [2] using unbiased covariance estimates.
               In [1] this mode was used and (incorrectly) denominated as Nutall-Strand. 
		Its the DEFAULT mode; according to [1] it provides the most accurate estimates.
  5:  Partial Correlation Estimation: Vieira-Morf [2] using biased covariance estimates.
		Yields similar results than Mode=2;
  3:  buggy: Partial Correlation Estimation: Nutall-Strand [2] (biased correlation function)
  9:  Partial Correlation Estimation: Nutall-Strand [2] (biased correlation function)
  7:  Partial Correlation Estimation: Nutall-Strand [2] (unbiased correlation function)
  8:  Least Squares w/o nans in Y(t):Y(t-p)
 10:  ARFIT [3] 
 11:  BURGV [4] 
 13:  modified BURGV -  
 14:  modified BURGV [4] 
 15:  Least Squares based on correlation matrix
 22: Modified Partial Correlation Estimation: Vieira-Morf [2,5] using unbiased covariance estimates.
 25: Modified Partial Correlation Estimation: Vieira-Morf [2,5] using biased covariance estimates.
 90,91,96: Experimental versions 
    Imputation methods:
  100+Mode: 
  200+Mode: forward, past missing values are assumed zero
  300+Mode: backward, past missing values are assumed zero
  400+Mode: forward+backward, past missing values are assumed zero
 1200+Mode: forward, past missing values are replaced with predicted value
 1300+Mode: backward, 'past' missing values are replaced with predicted value
 1400+Mode: forward+backward, 'past' missing values are replaced with predicted value
 2200+Mode: forward, past missing values are replaced with predicted value + noise to prevent decaying
 2300+Mode: backward, past missing values are replaced with predicted value + noise to prevent decaying
 2400+Mode: forward+backward, past missing values are replaced with predicted value + noise to prevent decaying
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
 MVAR estimates parameters of the Multi-Variate AutoRegressive model 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
mvfilter
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1028
 Multi-variate filter function
 Y = MVFILTER(B,A,X)
 [Y,Z] = MVFILTER(B,A,X,Z)
  Y = MVFILTER(B,A,X) filters the data in matrix X with the
    filter described by cell arrays A and B to create the filtered
    data Y.  The filter is a 'Direct Form II Transposed'
    implementation of the standard difference equation:
 
    a0*Y(n) = b0*X(:,n) + b1*X(:,n-1) + ... + bq*X(:,n-q)
                        - a1*Y(:,n-1) - ... - ap*Y(:,n-p)
  A=[a0,a1,a2,...,ap] and B=[b0,b1,b2,...,bq] must be matrices of
  size  Mx((p+1)*M) and Mx((q+1)*M), respectively. 
  a0,a1,...,ap, b0,b1,...,bq are matrices of size MxM
  a0 is usually the identity matrix I or must be invertible 
  X should be of size MxN, if X has size NxM a warning 
  is raised, and the output Y is also transposed. 
 A simulated MV-AR process can be generiated with 
	Y = mvfilter(eye(M), [eye(M),-AR],randn(M,N));
 A multivariate inverse filter can be realized with 
       [AR,RC,PE] = mvar(Y,P);
	E = mvfilter([eye(M),-AR],eye(M),Y);
 see also: MVAR, FILTER
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
 Multi-variate filter function
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
mvfreqz
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4475
 MVFREQZ multivariate frequency response
 [S,h,PDC,COH,DTF,DC,pCOH,dDTF,ffDTF,pCOH2,PDCF,coh,GGC,Af,GPDC,GGC2,DCOH] = mvfreqz(B,A,C,f,Fs)
 [...]  = mvfreqz(B,A,C,N,Fs)
  
 INPUT: 
 ======= 
 A, B	multivariate polynomials defining the transfer function
    a0*Y(n) = b0*X(n) + b1*X(n-1) + ... + bq*X(n-q)
                          - a1*Y(n-1) - ... - ap*Y(:,n-p)
  A=[a0,a1,a2,...,ap] and B=[b0,b1,b2,...,bq] must be matrices of
  size  Mx((p+1)*M) and Mx((q+1)*M), respectively. 
  C is the covariance of the input noise X (i.e. D'*D if D is the mixing matrix)
  N if scalar, N is the number of frequencies 
    if N is a vector, N are the designated frequencies. 
  Fs sampling rate [default 2*pi]
 
  A,B,C and D can by obtained from a multivariate time series 
       through the following commands: 
  [AR,RC,PE] = mvar(Y,P);
       M = size(AR,1); % number of channels       
       A = [eye(M),-AR];
       B = eye(M); 
       C = PE(:,M*P+1:M*(P+1)); 
 Fs 	sampling rate in [Hz]
 (N 	number of frequencies for computing the spectrum, this will become OBSOLETE),  
 f	vector of frequencies (in [Hz])  
 OUTPUT: 
 ======= 
 S   	power spectrum
 h	transfer functions, abs(h.^2) is the non-normalized DTF [11]
 PDC 	partial directed coherence [2]
 DC  	directed coupling [13] 	
 COH 	coherency (complex coherence) [5]
 DTF 	directed transfer function [3,13]
 pCOH 	partial coherence 
 dDTF 	direct Directed Transfer function
 ffDTF full frequency Directed Transfer Function 
 pCOH2 partial coherence - alternative method 
 GGC	a modified version of Geweke's Granger Causality [Geweke 1982]
	   !!! it uses a Multivariate AR model, and computes the bivariate GGC as in [Bressler et al 2007]. 
	   This is not the same as using bivariate AR models and GGC as in [Bressler et al 2007]
 Af	Frequency transform of A(z), abs(Af.^2) is the non-normalized PDC [11]
 PDCF 	Partial Directed Coherence Factor [2]
 GPDC 	Generalized Partial Directed Coherence [9,10]
 DCOH  directed coherence or Generalized DTF (GDTF) [12] (equ. 11a)
 see also: FREQZ, MVFILTER, MVAR
 
 REFERENCE(S):
 [1] H. Liang et al. Neurocomputing, 32-33, pp.891-896, 2000. 
 [2] L.A. Baccala and K. Samashima, Biol. Cybern. 84,463-474, 2001. 
 [3] A. Korzeniewska, et al. Journal of Neuroscience Methods, 125, 195-207, 2003. 
 [4] Piotr J. Franaszczuk, Ph.D. and Gregory K. Bergey, M.D.
 	Fast Algorithm for Computation of Partial Coherences From Vector Autoregressive Model Coefficients
	World Congress 2000, Chicago. 
 [5] Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M.
	Identifying true brain interaction from EEG data using the imaginary part of coherency.
	Clin Neurophysiol. 2004 Oct;115(10):2292-307. 
 [6] Schlogl A., Supp G.
       Analyzing event-related EEG data with multivariate autoregressive parameters.
       (Eds.) C. Neuper and W. Klimesch, 
       Progress in Brain Research: Event-related Dynamics of Brain Oscillations. 
       Analysis of dynamics of brain oscillations: methodological advances. Elsevier. 
       Progress in Brain Research 159, 2006, p. 135 - 147
 [7] Bressler S.L., Richter C.G., Chen Y., Ding M. (2007)
	Cortical fuctional network organization from autoregressive modelling of loal field potential oscillations.
	Statistics in Medicine, doi: 10.1002/sim.2935 
 [8] Geweke J., 1982	
	J.Am.Stat.Assoc., 77, 304-313.
 [9] L.A. Baccala, D.Y. Takahashi, K. Sameshima. (2006) 
 	Generalized Partial Directed Coherence. 
	Submitted to XVI Congresso Brasileiro de Automatica, Salvador, Bahia.  
 [10] L.A. Baccala, D.Y. Takahashi, K. Sameshima. 
 	Computer Intensive Testing for the Influence Between Time Series, 
	Eds. B. Schelter, M. Winterhalder, J. Timmer: 
	Handbook of Time Series Analysis - Recent Theoretical Developments and Applications
	Wiley, p.413, 2006.
 [11] M. Eichler
	On the evaluation of informatino flow in multivariate systems by the directed transfer function
	Biol. Cybern. 94: 469-482, 2006. 	
 [12] L. Faes, S. Erla, and G. Nollo, (2012)
	Measuring Connectivity in Linear Multivariate Processes: Definitions, Interpretation, and Practical Analysis
	Computational and Mathematical Methods in Medicine Volume 2012 (2012), Article ID 140513, 18 pages
	doi:10.1155/2012/140513
 [13] Maciej Kaminski, Mingzhou Ding, Wilson A. Truccolo, Steven L. Bressler
	Evaluating causal relations in neural systems: Granger causality, 
       directed transfer function and statistical assessment of significance.
 	Biol. Cybern. 85, 145-157 (2001)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 MVFREQZ multivariate frequency response
 [S,h,PDC,COH,DTF,DC,pCOH,dDTF,ffDTF,pC
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
pacf
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
 Partial Autocorrelation function
 [parcor,sig,cil,ciu] = pacf(Z,N);
 Input:
	Z    Signal, each row is analysed
	N    # of coefficients
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
 Partial Autocorrelation function
 [parcor,sig,cil,ciu] = pacf(Z,N);
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
parcor
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1160
 estimates partial autocorrelation coefficients 
 Multiple channels can be used (one per row).
 [PARCOR, AR, PE] = parcor(AutoCov); % calculates Partial autocorrelation, autoregressive coefficients and residual error variance from the Autocorrelation function. 
 [PARCOR] = parcor(acovf(x,p)); % calculates the Partial Autocorrelation coefficients of the data series x up to order p
  INPUT:
 AutoCov	Autocorrelation function for lag=0:P
  OUTPUT
 AR	autoregressive model parameter	
 PARCOR partial correlation coefficients (= -reflection coefficients)
 PE    remaining error variance
 All input and output parameters are organized in rows, one row 
 corresponds to the parameters of one channel. 
 The PARCOR coefficients are the negative reflection coefficients. 
 A significance test is implemented in PACF.
 see also: PACF ACOVF ACORF DURLEV AC2RC 
 
 REFERENCES:
  P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 estimates partial autocorrelation coefficients 
 Multiple channels can be used 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
poly2ac
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 183
 converts an AR polynomial into an autocorrelation sequence
 [R] = poly2ac(a [,efinal] );
 see also ACOVF ACORF AR2RC RC2AR DURLEV AC2POLY, POLY2RC, RC2POLY, RC2AC, AC2RC, POLY2AC
 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 converts an AR polynomial into an autocorrelation sequence
 [R] = poly2ac(a [,e
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
poly2ar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 288
 Converts AR polymials into autoregressive parameters. 
 Multiple polynomials can be converted. 
 function  [AR] = poly2ar(A);
  INPUT:
 A     AR polynomial, each row represents one polynomial
  OUTPUT
 AR    autoregressive model parameter	
 see also ACOVF ACORF DURLEV RC2AR AR2POLY
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
 Converts AR polymials into autoregressive parameters.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
poly2rc
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 434
 converts AR-polynomial into reflection coefficients
 [RC,R0] = poly2rc(A [,Efinal])
  INPUT:
 A     AR polynomial, each row represents one polynomial
 Efinal    is the final prediction error variance (default value 1)
  OUTPUT
 RC    reflection coefficients
 R0    is the variance (autocovariance at lag=0) based on the 
	prediction error
 see also ACOVF ACORF AR2RC RC2AR DURLEV AC2POLY, POLY2RC, RC2POLY, RC2AC, AC2RC, POLY2AC
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 converts AR-polynomial into reflection coefficients
 [RC,R0] = poly2rc(A [,Efin
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rc2ac
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 176
 converts reflection coefficients to autocorrelation sequence
 [R] = rc2ac(RC,R0);
 see also ACOVF ACORF AR2RC RC2AR DURLEV AC2POLY, POLY2RC, RC2POLY, RC2AC, AC2RC, POLY2AC
 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 converts reflection coefficients to autocorrelation sequence
 [R] = rc2ac(RC,R0
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rc2ar
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1000
 converts reflection coefficients into autoregressive parameters
 uses the Durbin-Levinson recursion for multiple channels
 function  [AR,RC,PE,ACF] = rc2ar(RC);
 function  [MX,PE] = rc2ar(RC);
  INPUT:
 RC    reflection coefficients
  OUTPUT
 AR    autoregressive model parameter	
 RC    reflection coefficients (= -PARCOR coefficients)
 PE    remaining error variance (relative to PE(1)=1)
 MX    transformation matrix between ARP and RC (Attention: needs O(p^2) memory)
        arp=MX(:,K*(K-1)/2+(1:K));
        rc =MX(:,(1:K).*(2:K+1)/2);
 All input and output parameters are organized in rows, one row 
 corresponds to the parameters of one channel
 see also ACOVF ACORF DURLEV AR2RC 
 
 REFERENCES:
  P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 converts reflection coefficients into autoregressive parameters
 uses the Durbi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rc2poly
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 174
 converts reflection coefficients into an AR-polynomial
 [a,efinal] = rc2poly(K)
 see also ACOVF ACORF AR2RC RC2AR DURLEV AC2POLY, POLY2RC, RC2POLY, RC2AC, AC2RC, POLY2AC
 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 converts reflection coefficients into an AR-polynomial
 [a,efinal] = rc2poly(K)
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
rmle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 432
 RMLE estimates AR Parameters using the Recursive Maximum Likelihood 
 Estimator according to [1]
 
 Use: [a,VAR]=rmle(x,p)
 Input: 
 x is a column vector of data
 p is the model order
 Output:
 a is a vector with the AR parameters of the recursive MLE
 VAR is the excitation white noise variance estimate
 Reference(s):
 [1] Kay S.M., Modern Spectral Analysis - Theory and Applications. 
       Prentice Hall, p. 232-233, 1988. 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 RMLE estimates AR Parameters using the Recursive Maximum Likelihood 
 Estimator
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
sbispec
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
 SBISPEC show BISPECTRUM 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
 SBISPEC show BISPECTRUM 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
selmo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2179
 Model order selection of an autoregrssive model
 [FPE,AIC,BIC,SBC,MDL,CAT,PHI,optFPE,optAIC,optBIC,optSBC,optMDL,optCAT,optPHI]=selmo(E,N);
 E	Error function E(p)
 N	length of the data set, that was used for calculating E(p)
 show  optional; if given the parameters are shown
 FPE	Final Prediction Error (Kay 1987, Wei 1990, Priestley 1981  -> Akaike 1969)
 AIC	Akaike Information Criterion (Marple 1987, Wei 1990, Priestley 1981 -> Akaike 1974)
 BIC	Bayesian Akaike Information Criterion (Wei 1990, Priestley 1981 -> Akaike 1978,1979)
 CAT	Parzen's CAT Criterion (Wei 1994 -> Parzen 1974)
 MDL	Minimal Description length Criterion (Marple 1987 -> Rissanen 1978,83)
 SBC	Schwartz's Bayesian Criterion (Wei 1994; Schwartz 1978)
 PHI	Phi criterion (Pukkila et al. 1988, Hannan 1980 -> Hannan & Quinn, 1979)
 HAR	Haring G. (1975)
 JEW	Jenkins and Watts (1968)
 optFPE 	order where FPE is minimal
 optAIC 	order where AIC is minimal
 optBIC 	order where BIC is minimal
 optSBC 	order where SBC is minimal
 optMDL 	order where MDL is minimal
 optCAT 	order where CAT is minimal
 optPHI 	order where PHI is minimal
 usually is 
 AIC > FPE > *MDL* > PHI > SBC > CAT ~ BIC
 REFERENCES:
  P.J. Brockwell and R.A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.
  S. Haykin "Adaptive Filter Theory" 3ed. Prentice Hall, 1996.
  M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. 
  C.E. Shannon and W. Weaver "The mathematical theory of communication" University of Illinois Press, Urbana 1949 (reprint 1963).
  W.S. Wei "Time Series Analysis" Addison Wesley, 1990.
  Jenkins G.M. Watts D.G "Spectral Analysis and its applications", Holden-Day, 1968.
  G. Haring  "Über die Wahl der optimalen Modellordnung bei der Darstellung von stationären Zeitreihen mittels Autoregressivmodell als Basis der Analyse von EEG - Biosignalen mit Hilfe eines Digitalrechners", Habilitationschrift - Technische Universität Graz, Austria, 1975.
                  (1)"About selecting the optimal model at the representation of stationary time series by means of an autoregressive model as basis of the analysis of EEG - biosignals by means of a digital computer)"
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Model order selection of an autoregrssive model
 [FPE,AIC,BIC,SBC,MDL,CAT,PHI,o
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
selmo2
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 271
 SELMO2 - model order selection for univariate and multivariate 
   autoregressive models 
 
  X = selmo(y,Pmax); 
  
  y 	data series
  Pmax maximum model order 
  X.A, X.B, X.C parameters of AR model 
  X.OPT... various optimization criteria
 
 see also: SELMO, MVAR, 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 SELMO2 - model order selection for univariate and multivariate 
   autoregressi
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
sinvest1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 93
SINVEST1 shows the parameters of a time series calculated by INVEST1
 only called by INVEST1
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
SINVEST1 shows the parameters of a time series calculated by INVEST1
 only calle
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
sumskipnan
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1234
 SUMSKIPNAN adds all non-NaN values. 
 All NaN's are skipped; NaN's are considered as missing values. 
 SUMSKIPNAN of NaN's only  gives O; and the number of valid elements is return. 
 SUMSKIPNAN is also the elementary function for calculating 
 various statistics (e.g. MEAN, STD, VAR, RMS, MEANSQ, SKEWNESS, 
 KURTOSIS, MOMENT, STATISTIC etc.) from data with missing values.  
 SUMSKIPNAN implements the DIMENSION-argument for data with missing values.
 Also the second output argument return the number of valid elements (not NaNs) 
 
 Y = sumskipnan(x [,DIM])
 [Y,N,SSQ] = sumskipnan(x [,DIM])
 [...] = sumskipnan(x, DIM, W)
 
 x	input data 	
 DIM	dimension (default: [])
	empty DIM sets DIM to first non singleton dimension	
 W	weight vector for weighted sum, numel(W) must fit size(x,DIM)
 Y	resulting sum
 N	number of valid (not missing) elements
 SSQ	sum of squares
 the function FLAG_NANS_OCCURED() returns whether any value in x
  is a not-a-number (NaN)
 features:
 - can deal with NaN's (missing values)
 - implements dimension argument. 
 - computes weighted sum 
 - compatible with Matlab and Octave
 see also: FLAG_NANS_OCCURED, SUM, NANSUM, MEAN, STD, VAR, RMS, MEANSQ, 
      SSQ, MOMENT, SKEWNESS, KURTOSIS, SEM
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
 SUMSKIPNAN adds all non-NaN values.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
tsademo
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
 TSADEMO	demonstrates INVEST1 on EEG data
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
 TSADEMO	demonstrates INVEST1 on EEG data
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
ucp
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 476
 UCP(C) tests if the polynomial C is a Unit-Circle-Polynomial.
	It tests if all roots lie inside the unit circle like
       B=ucp(C) does the same as
	B=all(abs(roots(C))<1) but much faster.
	The Algorithm is based on the Jury-Scheme.
	C are the elements of the Polynomial
	C(1)*X^N + ... + C(N)*X + C(N+1).
 
 REFERENCES:
  O. Foellinger "Lineare Abtastsysteme", Oldenburg Verlag, Muenchen, 1986.
  F. Gausch "Systemtechnik", Textbook, University of Technology Graz, 1993. 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 62
 UCP(C) tests if the polynomial C is a Unit-Circle-Polynomial.
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
y2res
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 534
 Y2RES evaluates basic statistics of a data series
 
 R = y2res(y)
	several statistics are estimated from each column of y
 
 OUTPUT:
   R.N     number of samples, NaNs are not counted 
   R.SUM   sum of samples
   R.MEAN  mean
   R.STD   standard deviation 
   R.VAR   variance
   R.Max   Maximum
   R.Min   Minimum 
   ...   and many more including:  
	MEDIAN, Quartiles, Variance, standard error of the mean (SEM), 
	Coefficient of Variation, Quantization (QUANT), TRIMEAN, SKEWNESS, 
	KURTOSIS, Root-Mean-Square (RMS), ENTROPY 
 
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
 Y2RES evaluates basic statistics of a data series
 
 R = y2res(y)
	several stat
 |