/usr/include/paraview/vtkImplicitFunction.h is in paraview-dev 5.0.1+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117  | /*=========================================================================
  Program:   Visualization Toolkit
  Module:    vtkImplicitFunction.h
  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.
=========================================================================*/
// .NAME vtkImplicitFunction - abstract interface for implicit functions
// .SECTION Description
// vtkImplicitFunction specifies an abstract interface for implicit
// functions. Implicit functions are real valued functions defined in 3D
// space, w = F(x,y,z). Two primitive operations are required: the ability to
// evaluate the function, and the function gradient at a given point. The
// implicit function divides space into three regions: on the surface
// (F(x,y,z)=w), outside of the surface (F(x,y,z)>c), and inside the
// surface (F(x,y,z)<c). (When c is zero, positive values are outside,
// negative values are inside, and zero is on the surface. Note also
// that the function gradient points from inside to outside.)
//
// Implicit functions are very powerful. It is possible to represent almost
// any type of geometry with the level sets w = const, especially if you use
// boolean combinations of implicit functions (see vtkImplicitBoolean).
//
// vtkImplicitFunction provides a mechanism to transform the implicit
// function(s) via a vtkAbstractTransform.  This capability can be used to
// translate, orient, scale, or warp implicit functions.  For example,
// a sphere implicit function can be transformed into an oriented ellipse.
// .SECTION Caveats
// The transformation transforms a point into the space of the implicit
// function (i.e., the model space). Typically we want to transform the
// implicit model into world coordinates. In this case the inverse of the
// transformation is required.
// .SECTION See Also
// vtkAbstractTransform vtkSphere vtkCylinder vtkImplicitBoolean vtkPlane
// vtkPlanes vtkQuadric vtkImplicitVolume vtkSampleFunction vtkCutter
// vtkClipPolyData
#ifndef vtkImplicitFunction_h
#define vtkImplicitFunction_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkObject.h"
class vtkAbstractTransform;
class VTKCOMMONDATAMODEL_EXPORT vtkImplicitFunction : public vtkObject
{
public:
  vtkTypeMacro(vtkImplicitFunction,vtkObject);
  void PrintSelf(ostream& os, vtkIndent indent);
  // Description:
  // Overload standard modified time function. If Transform is modified,
  // then this object is modified as well.
  unsigned long GetMTime();
  // Description:
  // Evaluate function at position x-y-z and return value. Point x[3] is
  // transformed through transform (if provided).
  double FunctionValue(const double x[3]);
  double FunctionValue(double x, double y, double z) {
    double xyz[3] = {x, y, z}; return this->FunctionValue(xyz); };
  // Description:
  // Evaluate function gradient at position x-y-z and pass back vector. Point
  // x[3] is transformed through transform (if provided).
  void FunctionGradient(const double x[3], double g[3]);
  double *FunctionGradient(const double x[3]) {
    this->FunctionGradient(x,this->ReturnValue);
    return this->ReturnValue; };
  double *FunctionGradient(double x, double y, double z) {
    double xyz[3] = {x, y, z}; return this->FunctionGradient(xyz); };
  // Description:
  // Set/Get a transformation to apply to input points before
  // executing the implicit function.
  virtual void SetTransform(vtkAbstractTransform*);
  virtual void SetTransform(const double elements[16]);
  vtkGetObjectMacro(Transform,vtkAbstractTransform);
  // Description:
  // Evaluate function at position x-y-z and return value.  You should
  // generally not call this method directly, you should use
  // FunctionValue() instead.  This method must be implemented by
  // any derived class.
  virtual double EvaluateFunction(double x[3]) = 0;
  double EvaluateFunction(double x, double y, double z) {
    double xyz[3] = {x, y, z}; return this->EvaluateFunction(xyz); };
  // Description:
  // Evaluate function gradient at position x-y-z and pass back vector.
  // You should generally not call this method directly, you should use
  // FunctionGradient() instead.  This method must be implemented by
  // any derived class.
  virtual void EvaluateGradient(double x[3], double g[3]) = 0;
protected:
  vtkImplicitFunction();
  ~vtkImplicitFunction();
  vtkAbstractTransform *Transform;
  double ReturnValue[3];
private:
  vtkImplicitFunction(const vtkImplicitFunction&);  // Not implemented.
  void operator=(const vtkImplicitFunction&);  // Not implemented.
};
#endif
 |