This file is indexed.

/usr/lib/python2.7/dist-packages/chaco/color_spaces.py is in python-chaco 4.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
""" Conversion functions between various color spaces.

The implementations and data are mostly taken from the old
scipy.sandbox.image package.

The CIE XYZ tristimulus colorspace with a standard D65 whitepoint is the
default interchange color space for the implementations here. This is
a useful whitepoint for viewing on computer monitors. However, it should
be noted that the dimmer D50 whitepoint is often used in print
applications. Notably, ICC profiles use the XYZ space with a D50
whitepoint as one of its standard interchange color spaces.
"""

import numpy as np
from numpy.linalg import inv, solve


#### Utilities ################################################################

def convert(matrix, TTT, axis=-1):
    """ Apply linear matrix transformation to an array of color triples.

    Parameters
    ----------
    matrix : float array (3, 3)
        The transformation to apply.
    TTT : float array
        The set of colors to transform.
    axis : int, optional
        The axis of `TTT` along which the color triples extend.

    Returns
    -------
    OUT : float array
        The transformed colors.
    """
    TTT = np.asarray(TTT)
    if (axis != 0):
        TTT = np.swapaxes(TTT, 0, axis)
    oldshape = TTT.shape
    TTT = np.reshape(TTT, (3, -1))
    OUT = np.dot(matrix, TTT)
    OUT.shape = oldshape
    if (axis != 0):
        OUT = np.swapaxes(OUT, axis, 0)
    return OUT


def makeslices(n):
    """ Return a list of `n` slice objects.

    Each slice object corresponds to [:] without arguments.
    """
    slices = [slice(None)] * n
    return slices


def separate_colors(xyz, axis=-1):
    """ Separate an array of color triples into three arrays, one for
    each color axis.

    Parameters
    ----------
    xyz : float array
    axis : int, optional
        The axis along which the color triples extend.

    Returns
    -------
    x : float array
    y : float array
    z : float array
        The separate color arrays.
    axis : int
        The axis along which they need to be reassembled.
    """
    n = len(xyz.shape)
    if axis < 0:
        axis = n + axis
    slices = makeslices(n)
    slices[axis] = 0
    x = xyz[slices]
    slices[axis] = 1
    y = xyz[slices]
    slices[axis] = 2
    z = xyz[slices]

    return x, y, z, axis


def join_colors(c1, c2, c3, axis):
    """ Rejoin the separated colors into a single array.
    """
    c1 = np.asarray(c1)
    c2 = np.asarray(c2)
    c3 = np.asarray(c3)
    newshape = c1.shape[:axis] + (1,) + c1.shape[axis:]
    c1.shape = c2.shape = c3.shape = newshape
    return np.concatenate((c1, c2, c3), axis=axis)


def triwhite(x, y):
    """ Convert x,y chromaticity coordinates to XYZ tristimulus values.
    """
    X = x / y
    Y = 1.0
    Z = (1-x-y)/y
    return [X, Y, Z]

#### Data #####################################################################

# From the sRGB specification.
xyz_from_rgb = np.array([[0.412453, 0.357580, 0.180423],
                         [0.212671, 0.715160, 0.072169],
                         [0.019334, 0.119193, 0.950227]])
rgb_from_xyz = inv(xyz_from_rgb)


# XYZ white-point coordinates
#  from http://en.wikipedia.org/wiki/Standard_illuminant
whitepoints = {
    'CIE A': ['Normal incandescent', triwhite(0.44757, 0.40745)],
    'CIE B': ['Direct sunlight', triwhite(0.34842, 0.35161)],
    'CIE C': ['Average sunlight', triwhite(0.31006, 0.31616)],
    'CIE E': ['Normalized reference', triwhite(1.0/3, 1.0/3)],
    'D50': ['Bright tungsten', triwhite(0.34567, 0.35850)],
    'D55': ['Cloudy daylight', triwhite(0.33242, 0.34743)],
    'D65': ['Daylight', triwhite(0.31271, 0.32902)],
    'D75': ['?', triwhite(0.29902, 0.31485)],
}


#### Conversion routines ######################################################

def xyz2lab(xyz, axis=-1, wp=whitepoints['D65'][-1]):
    """ Convert XYZ tristimulus values to CIE L*a*b*.

    Parameters
    ----------
    xyz : float array
        XYZ values.
    axis : int, optional
        The axis of the XYZ values.
    wp : list of 3 floats, optional
        The XYZ tristimulus values of the whitepoint.

    Returns
    -------
    lab : float array
        The L*a*b* colors.
    """
    x, y, z, axis = separate_colors(xyz, axis)
    xn, yn, zn = x/wp[0], y/wp[1], z/wp[2]

    def f(t):
        eps = 216/24389.
        kap = 24389/27.
        return np.where(t > eps,
                        np.power(t, 1.0/3),
                        (kap*t + 16.0)/116)

    fx, fy, fz = f(xn), f(yn), f(zn)
    L = 116*fy - 16
    a = 500*(fx - fy)
    b = 200*(fy - fz)

    return join_colors(L, a, b, axis)


def lab2xyz(lab, axis=-1, wp=whitepoints['D65'][-1]):
    """ Convert CIE L*a*b* colors to XYZ tristimulus values.

    Parameters
    ----------
    lab : float array
        L*a*b* values.
    axis : int, optional
        The axis of the XYZ values.
    wp : list of 3 floats, optional
        The XYZ tristimulus values of the whitepoint.

    Returns
    -------
    xyz : float array
        The XYZ colors.
    """
    lab = np.asarray(lab)
    L, a, b, axis = separate_colors(lab, axis)
    fy = (L+16)/116.0
    fz = fy - b / 200.
    fx = a/500.0 + fy

    def finv(y):
        eps3 = (216/24389.)**3
        kap = 24389/27.
        return np.where(y > eps3,
                        np.power(y, 3),
                        (116*y - 16)/kap)
    xr, yr, zr = finv(fx), finv(fy), finv(fz)

    return join_colors(xr*wp[0], yr*wp[1], zr*wp[2], axis)


#  RGB values that will be displayed on a screen are always nonlinear
#  R'G'B' values.  To get the XYZ value of the color that will be
#  displayed you need a calibrated monitor with a profile.
#  But, for quick-and-dirty calculation you can often assume the standard
#  sR'G'B' coordinate system for your computer, and so the rgbp2rgb will
#  put you in the linear coordinate system (assuming normalized to [0,1]
#  sR'G'B' coordinates)
#

# sRGB <-> sR'G'B'  equations from
#   http://www.w3.org/Graphics/Color/sRGB
#   http://www.srgb.com/basicsofsrgb.htm

# Macintosh displays are usually gamma = 1.8

def rgb2rgbp(rgb, gamma=None):
    """ Convert linear RGB coordinates to nonlinear R'G'B' coordinates.

    Parameters
    ----------
    rgb : float array
    gamma : float, optional
        If provided, then this value of gamma will be used to correct the
        colors. If not provided, then the standard sR'G'B' space will be
        assumed. It is almost, but not quite equivalent to a gamma of 2.2.

    Returns
    -------
    rgbp : float array
    """
    rgb = np.asarray(rgb)
    if gamma is None:
        eps = 0.0031308
        mask = rgb < eps
        rgbp = np.empty_like(rgb)
        rgbp[mask] = 12.92 * rgb[mask]
        rgbp[~mask] = 1.055*rgb[~mask]**(1.0/2.4) - 0.055
        return rgbp
    else:
        return rgb**(1.0/gamma)


def rgbp2rgb(rgbp, gamma=None):
    """ Convert nonlinear R'G'B' coordinates to linear RGB coordinates.

    Parameters
    ----------
    rgbp : float array
    gamma : float, optional
        If provided, then this value of gamma will be used to correct the
        colors. If not provided, then the standard sR'G'B' space will be
        assumed. It is almost, but not quite equivalent to a gamma of 2.2.

    Returns
    -------
    rgb : float array
    """
    rgbp = np.asarray(rgbp)
    if gamma is None:
        eps = 0.04045
        mask = rgbp <= eps
        rgb = np.empty_like(rgbp)
        rgb[mask] = rgbp[mask] / 12.92
        rgb[~mask] = ((rgbp[~mask] + 0.055) / 1.055) ** 2.4
        return rgb
    else:
        return rgbp**gamma


def xyz2rgb(xyz, axis=-1):
    """ Convert XYZ tristimulus values to linear RGB coordinates.

    Parameters
    ----------
    xyz : float array
        XYZ values.
    axis : int, optional
        The axis of the XYZ values.

    Returns
    -------
    rgb : float array
        The RGB colors.
    """
    return convert(rgb_from_xyz, xyz, axis)


def rgb2xyz(rgb, axis=-1):
    """ Convert linear RGB coordinates to XYZ tristimulus values.

    Parameters
    ----------
    rgb : float array
        RGB values.
    axis : int, optional
        The axis of the XYZ values.

    Returns
    -------
    xyz : float array
        The XYZ colors.
    """
    return convert(xyz_from_rgb, rgb, axis)


def srgb2xyz(srgb, axis=-1):
    """ Convert sR'G'B' colors to XYZ.

    Parameters
    ----------
    srgb : float array
        sR'G'B' values.
    axis : int, optional
        The axis of the XYZ values.

    Returns
    -------
    xyz : float array
        The XYZ colors.
    """
    return rgb2xyz(rgbp2rgb(srgb), axis=axis)


def xyz2srgb(xyz, axis=-1):
    """ Convert XYZ colors to sR'G'B'.

    Parameters
    ----------
    xyz : float array
        XYZ values.
    axis : int, optional
        The axis of the XYZ values.

    Returns
    -------
    srgb : float array
        The sR'G'B' colors.
    """
    return rgb2rgbp(xyz2rgb(xyz, axis=axis))


def xyz2xyz(xyz):
    """ Identity mapping.
    """
    return xyz


def xyz2msh(xyz, axis=-1, wp=whitepoints['D65'][-1]):
    """ Convert XYZ tristimulus values to Msh.

    Msh is a hemispherical coordinate system derived from L*a*b*. The
    origin remains the same. M is the distance from the origin. s is an
    inclination angle from the vertical corresponding to saturation.
    h is the azimuthal angle corresponding to hue.

    Moreland, Kenneth. Diverging Color Maps for Scientific Visualization
    (Expanded).
    http://www.sandia.gov/~kmorel/documents/ColorMaps/ColorMapsExpanded.pdf

    Parameters
    ----------
    xyz : float array
        XYZ values.
    axis : int, optional
        The axis of the XYZ values.
    wp : list of 3 floats, optional
        The XYZ tristimulus values of the whitepoint.

    Returns
    -------
    msh : float array
        The Msh colors.
    """
    L, a, b, axis = separate_colors(xyz2lab(xyz, axis=axis, wp=wp), axis)
    M = np.sqrt(L*L + a*a + b*b)
    s = np.arccos(L / M)
    h = np.arctan2(b, a)

    return join_colors(M, s, h, axis)


def msh2xyz(msh, axis=-1, wp=whitepoints['D65'][-1]):
    """ Convert Msh values to XYZ tristimulus values.

    Parameters
    ----------
    msh : float array
        The Msh colors.
    axis : int, optional
        The axis of the XYZ values.
    wp : list of 3 floats, optional
        The XYZ tristimulus values of the whitepoint.

    Returns
    -------
    xyz : float array
        XYZ values.
    """
    M, s, h, axis = separate_colors(msh, axis)
    L = M * np.cos(s)
    a = M * np.sin(s) * np.cos(h)
    b = M * np.sin(s) * np.sin(h)

    return lab2xyz(join_colors(L, a, b, axis), axis=axis, wp=wp)