This file is indexed.

/usr/lib/python2.7/dist-packages/chaco/data_range_1d.py is in python-chaco 4.5.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
"""
Defines the DataRange1D class.
"""


# Major library imports
from math import ceil, floor, log
from numpy import compress, inf, isinf, isnan, ndarray

# Enthought library imports
from traits.api import Bool, CFloat, Enum, Float, Property, Trait, \
                                 Callable

# Local relative imports
from base import arg_find_runs
from base_data_range import BaseDataRange
from ticks import heckbert_interval


class DataRange1D(BaseDataRange):
    """ Represents a 1-D data range.
    """

    # The actual value of the lower bound of this range (overrides
    # AbstractDataRange). To set it, use **low_setting**.
    low = Property
    # The actual value of the upper bound of this range (overrides
    # AbstractDataRange). To set it, use **high_setting**.
    high = Property

    # Property for the lower bound of this range (overrides AbstractDataRange).
    #
    # * 'auto': The lower bound is automatically set at or below the minimum
    #   of the data.
    # * 'track': The lower bound tracks the upper bound by **tracking_amount**.
    # * CFloat: An explicit value for the lower bound
    low_setting = Property(Trait('auto', 'auto', 'track', CFloat))
    # Property for the upper bound of this range (overrides AbstractDataRange).
    #
    # * 'auto': The upper bound is automatically set at or above the maximum
    #   of the data.
    # * 'track': The upper bound tracks the lower bound by **tracking_amount**.
    # * CFloat: An explicit value for the upper bound
    high_setting = Property(Trait('auto', 'auto', 'track', CFloat))

    # Do "auto" bounds imply an exact fit to the data? If False,
    # they pad a little bit of margin on either side.
    tight_bounds = Bool(True)

    # A user supplied function returning the proper bounding interval.
    # bounds_func takes (data_low, data_high, margin, tight_bounds)
    # and returns (low, high)
    bounds_func = Callable

    # The amount of margin to place on either side of the data, expressed as
    # a percentage of the full data width
    margin = Float(0.05)

    # The minimum percentage difference between low and high.  That is,
    # (high-low) >= epsilon * low.
    # Used to be 1.0e-20 but chaco cannot plot at such a precision!
    epsilon = CFloat(1.0e-10)

    # When either **high** or **low** tracks the other, track by this amount.
    default_tracking_amount = CFloat(20.0)

    # The current tracking amount. This value changes with zooming.
    tracking_amount = default_tracking_amount

    # Default tracking state. This value is used when self.reset() is called.
    #
    # * 'auto': Both bounds reset to 'auto'.
    # * 'high_track': The high bound resets to 'track', and the low bound
    #   resets to 'auto'.
    # * 'low_track': The low bound resets to 'track', and the high bound
    #   resets to 'auto'.
    default_state = Enum('auto', 'high_track', 'low_track')

    # FIXME: this attribute is not used anywhere, is it safe to remove it?
    # Is this range dependent upon another range?
    fit_to_subset = Bool(False)

    #------------------------------------------------------------------------
    # Private traits
    #------------------------------------------------------------------------

    # The "_setting" attributes correspond to what the user has "set"; the
    # "_value" attributes are the actual numerical values for the given
    # setting.

    # The user-specified low setting.
    _low_setting = Trait('auto', 'auto', 'track', CFloat)
    # The actual numerical value for the low setting.
    _low_value = CFloat(-inf)
    # The user-specified high setting.
    _high_setting = Trait('auto', 'auto', 'track', CFloat)
    # The actual numerical value for the high setting.
    _high_value = CFloat(inf)

    # A list of attributes to persist
    # _pickle_attribs = ("_low_setting", "_high_setting")

    #------------------------------------------------------------------------
    # AbstractRange interface
    #------------------------------------------------------------------------

    def clip_data(self, data):
        """ Returns a list of data values that are within the range.

        Implements AbstractDataRange.
        """
        return compress(self.mask_data(data), data)

    def mask_data(self, data):
        """ Returns a mask array, indicating whether values in the given array
        are inside the range.

        Implements AbstractDataRange.
        """
        return ((data.view(ndarray) >= self._low_value) &
                (data.view(ndarray) <= self._high_value))

    def bound_data(self, data):
        """ Returns a tuple of indices for the start and end of the first run
        of *data* that falls within the range.

        Implements AbstractDataRange.
        """
        mask = self.mask_data(data)
        runs = arg_find_runs(mask, "flat")
        # Since runs of "0" are also considered runs, we have to cycle through
        # until we find the first run of "1"s.
        for run in runs:
            if mask[run[0]] == 1:
                # arg_find_runs returns 1 past the end
                return run[0], run[1] - 1
        return (0, 0)

    def set_bounds(self, low, high):
        """ Sets all the bounds of the range simultaneously.

        Implements AbstractDataRange.
        """
        if low == 'track':
            # Set the high setting first
            result_high = self._do_set_high_setting(high, fire_event=False)
            result_low = self._do_set_low_setting(low, fire_event=False)
            result = result_low or result_high
        else:
            # Either set low first or order doesn't matter
            result_low = self._do_set_low_setting(low, fire_event=False)
            result_high = self._do_set_high_setting(high, fire_event=False)
            result = result_high or result_low
        if result:
            self.updated = result

    def scale_tracking_amount(self, multiplier):
        """ Sets the **tracking_amount** to a new value, scaled by *multiplier*.
        """
        self.tracking_amount = self.tracking_amount * multiplier
        self._do_track()

    def set_tracking_amount(self, amount):
        """ Sets the **tracking_amount** to a new value, *amount*.
        """
        self.tracking_amount = amount
        self._do_track()

    def set_default_tracking_amount(self, amount):
        """ Sets the **default_tracking_amount** to a new value, *amount*.
        """
        self.default_tracking_amount = amount

    #------------------------------------------------------------------------
    # Public methods
    #------------------------------------------------------------------------

    def reset(self):
        """ Resets the bounds of this range, based on **default_state**.
        """
        # need to maintain 'track' setting
        if self.default_state == 'auto':
            self._high_setting = 'auto'
            self._low_setting = 'auto'
        elif self.default_state == 'low_track':
            self._high_setting = 'auto'
            self._low_setting = 'track'
        elif self.default_state == 'high_track':
            self._high_setting = 'track'
            self._low_setting = 'auto'
        self._refresh_bounds()
        self.tracking_amount = self.default_tracking_amount

    def refresh(self):
        """ If any of the bounds is 'auto', this method refreshes the actual
        low and high values from the set of the view filters' data sources.
        """
        if ('auto' in (self._low_setting, self._high_setting)) or \
            ('track' in (self._low_setting, self._high_setting)):
            # If the user has hard-coded bounds, then refresh() doesn't do
            # anything.
            self._refresh_bounds()
        else:
            return

    #------------------------------------------------------------------------
    # Private methods (getters and setters)
    #------------------------------------------------------------------------

    def _get_low(self):
        return float(self._low_value)

    def _set_low(self, val):
        return self._set_low_setting(val)

    def _get_low_setting(self):
        return self._low_setting

    def _do_set_low_setting(self, val, fire_event=True):
        """
        Returns
        -------
        If fire_event is False and the change would have fired an event, returns
        the tuple of the new low and high values.  Otherwise returns None.  In
        particular, if fire_event is True, it always returns None.
        """
        new_values = None
        if self._low_setting != val:

            # Save the new setting.
            self._low_setting = val

            # If val is 'auto' or 'track', get the corresponding numerical
            # value.
            if val == 'auto':
                if len(self.sources) > 0:
                    val = min([source.get_bounds()[0]
                               for source in self.sources])
                else:
                    val = -inf
            elif val == 'track':
                if len(self.sources) > 0 or self._high_setting != 'auto':
                    val = self._high_value - self.tracking_amount
                else:
                    val = -inf

            # val is now a numerical value.  If it is the same as the current
            # value, there is nothing to do.
            if self._low_value != val:
                self._low_value = val
                if self._high_setting == 'track':
                    self._high_value = val + self.tracking_amount
                if fire_event:
                    self.updated = (self._low_value, self._high_value)
                else:
                    new_values = (self._low_value, self._high_value)

        return new_values

    def _set_low_setting(self, val):
        self._do_set_low_setting(val, True)

    def _get_high(self):
        return float(self._high_value)

    def _set_high(self, val):
        return self._set_high_setting(val)

    def _get_high_setting(self):
        return self._high_setting

    def _do_set_high_setting(self, val, fire_event=True):
        """
        Returns
        -------
        If fire_event is False and the change would have fired an event, returns
        the tuple of the new low and high values.  Otherwise returns None.  In
        particular, if fire_event is True, it always returns None.
        """
        new_values = None
        if self._high_setting != val:

            # Save the new setting.
            self._high_setting = val

            # If val is 'auto' or 'track', get the corresponding numerical
            # value.
            if val == 'auto':
                if len(self.sources) > 0:
                    val = max([source.get_bounds()[1]
                               for source in self.sources])
                else:
                    val = inf
            elif val == 'track':
                if len(self.sources) > 0 or self._low_setting != 'auto':
                    val = self._low_value + self.tracking_amount
                else:
                    val = inf

            # val is now a numerical value.  If it is the same as the current
            # value, there is nothing to do.
            if self._high_value != val:
                self._high_value = val
                if self._low_setting == 'track':
                    self._low_value = val - self.tracking_amount
                if fire_event:
                    self.updated = (self._low_value, self._high_value)
                else:
                    new_values = (self._low_value, self._high_value)

        return new_values

    def _set_high_setting(self, val):
        self._do_set_high_setting(val, True)

    def _refresh_bounds(self):
        null_bounds = False
        if len(self.sources) == 0:
            null_bounds = True
        else:
            bounds_list = [source.get_bounds() for source in self.sources \
                              if source.get_size() > 0]

            if len(bounds_list) == 0:
                null_bounds = True

        if null_bounds:
            # If we have no sources and our settings are "auto", then reset our
            # bounds to infinity; otherwise, set the _value to the corresponding
            # setting.
            if (self._low_setting in ("auto", "track")):
                self._low_value = -inf
            else:
                self._low_value = self._low_setting
            if (self._high_setting in ("auto", "track")):
                self._high_value = inf
            else:
                self._high_value = self._high_setting
            return
        else:
            mins, maxes = zip(*bounds_list)

            low_start, high_start = \
                     calc_bounds(self._low_setting, self._high_setting,
                                 mins, maxes, self.epsilon,
                                 self.tight_bounds, margin=self.margin,
                                 track_amount=self.tracking_amount,
                                 bounds_func=self.bounds_func)

        if (self._low_value != low_start) or (self._high_value != high_start):
            self._low_value = low_start
            self._high_value = high_start
            self.updated = (self._low_value, self._high_value)
        return

    def _do_track(self):
        changed = False
        if self._low_setting == 'track':
            new_value = self._high_value - self.tracking_amount
            if self._low_value != new_value:
                self._low_value = new_value
                changed = True
        elif self._high_setting == 'track':
            new_value = self._low_value + self.tracking_amount
            if self._high_value != new_value:
                self._high_value = new_value
                changed = True
        if changed:
            self.updated = (self._low_value, self._high_value)

    #------------------------------------------------------------------------
    # Event handlers
    #------------------------------------------------------------------------

    def _sources_items_changed(self, event):
        self.refresh()
        for source in event.removed:
            source.on_trait_change(self.refresh, "data_changed", remove=True)
        for source in event.added:
            source.on_trait_change(self.refresh, "data_changed")

    def _sources_changed(self, old, new):
        self.refresh()
        for source in old:
            source.on_trait_change(self.refresh, "data_changed", remove=True)
        for source in new:
            source.on_trait_change(self.refresh, "data_changed")

    #------------------------------------------------------------------------
    # Serialization interface
    #------------------------------------------------------------------------

    def _post_load(self):
        self._sources_changed(None, self.sources)


###### method to calculate bounds for a given 1-dimensional set of data
def calc_bounds(low_set, high_set, mins, maxes, epsilon, tight_bounds,
                margin=0.08, track_amount=0, bounds_func=None):
    """ Calculates bounds for a given 1-D set of data.

    Parameters
    ----------
    low_set : 'auto', 'track', or number
        Current low setting
    high_set : 'auto', 'track', or number
        Current high setting
    mins : list of numbers
        Potential minima.
    maxes : list
        Potential maxima.
    epsilon : number
        Minimum percentage difference between bounds
    tight_bounds : Boolean
        Do 'auto' bounds imply an exact fit to the data? If False, they pad a
        little bit of margin on either side.
    margin : float (default=0.08)
        The margin, expressed as a percentage of total data width, to place
        on either side of the data if tight_bounds is False.
    track_amount : number
        The amount by which a 'track' bound tracks another bound.
    bounds_func : Callable
        A callable which can override the bounds calculation.

    Returns
    -------
    (min, max) for the new bounds. If either of the calculated bounds is NaN,
    returns (0,0).

    Description
    -----------
    Setting both *low_set* and *high_set* to 'track' is an invalid state;
    the method copes by setting *high_set* to 'auto', and proceeding.
    """

    if (low_set == 'track') and (high_set == 'track'):
        high_set = 'auto'

    if low_set == 'auto':
        real_min = min(mins)
    elif low_set == 'track':
        # real_max hasn't been set yet
        pass
    else:
        real_min = low_set

    if high_set == 'auto':
        real_max = max(maxes)
    elif high_set == 'track':
        # real_min has been set now
        real_max = real_min + track_amount
    else:
        real_max = high_set

    # Go back and set real_min if we need to
    if low_set == 'track':
        real_min = real_max - track_amount

    # If we're all NaNs, just return a 0,1 range
    if isnan(real_max) or isnan(real_min):
        return 0, 0

    if not isinf(real_min) and not isinf(real_max) and \
            (abs(real_max - real_min) <= abs(epsilon * real_min)):
        # If we get here, then real_min and real_max are (for all
        # intents and purposes) identical, and so we just base
        # everything off of real_min.
        # Note: we have to use <= and not strict < because otherwise
        # we won't catch the cases when real_min == 0.0.
        if abs(real_min) > 1.0:
            # Round up to the next power of ten that encloses these
            log_val = log(abs(real_min), 10)
            if real_min >= 0:
                real_min = pow(10, floor(log_val))
                real_max = pow(10, ceil(log_val))
            else:
                real_min = -pow(10, ceil(log_val))
                real_max = -pow(10, floor(log_val))
        else:
            # If the user has a constant value less than 1, then these
            # are the bounds we use.
            if real_min > 0.0:
                real_max = 2 * real_min
                real_min = 0.0
            elif real_min == 0.0:
                real_min = -1.0
                real_max = 1.0
            else:
                real_min = 2 * real_min
                real_max = 0.0

    # Now test if the bounds leave some room around the data, unless
    # tight_bounds==True or unless another function to compute the bound
    # is provided.
    if bounds_func is not None:
        return bounds_func(real_min, real_max, margin, tight_bounds)
    elif not tight_bounds:
        low, high, d = heckbert_interval(real_min, real_max)
        # 2nd run of heckbert_interval necessary? Will be if bounds are
        # too tights (ie within the margin).
        rerun = False
        if abs(low - real_min) / (high - low) < margin:
            modified_min = real_min - (high - low) * margin
            rerun = True
        else:
            modified_min = real_min
        if abs(high - real_max) / (high - low) < margin:
            modified_max = real_max + (high - low) * margin
            rerun = True
        else:
            modified_max = real_max
        if rerun:
            low, high, d = heckbert_interval(modified_min, modified_max)
        return low, high
    else:
        return real_min, real_max