This file is indexed.

/usr/lib/python2.7/dist-packages/chemfp/openbabel_patterns.py is in python-chemfp 1.1p1-2.1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
from __future__ import absolute_import

from openbabel import OBSmartsPattern, OBBitVec

from . import openbabel
from . import pattern_fingerprinter
from . import types
from . import __version__ as chemfp_version

SOFTWARE = openbabel.SOFTWARE + (" chemfp/%s" % (chemfp_version,))

# HasMatch was added to OpenBabel 2.3 .
_HAS_HASMATCH = hasattr(OBSmartsPattern(), "HasMatch")

class Matcher(object):
    def __init__(self, ob_matcher):
        self.ob_matcher = ob_matcher

    if _HAS_HASMATCH:
        def HasMatch(self, mol):
            return self.ob_matcher.HasMatch(mol)
    else:
        def HasMatch(self, mol):
            return self.ob_matcher.Match(mol, True)
        
    def NumUniqueMatches(self, mol):
        self.ob_matcher.Match(mol)
        return sum(1 for x in self.ob_matcher.GetUMapList())

class HydrogenMatcher(object):
    def __init__(self, max_count):
        self.max_count = max_count
    def HasMatch(self, mol):
        for i in range(1, mol.NumAtoms()+1):
            atom = mol.GetAtom(i)
            if atom.GetAtomicNum() == 1:
                return True
            if atom.ImplicitHydrogenCount():
                return True
        return False
        
    def NumUniqueMatches(self, mol):
        count = 0
        for i in range(1, mol.NumAtoms()+1):
            atom = mol.GetAtom(i)
            if atom.GetAtomicNum() == 1:
                count += 1
            count += atom.ImplicitHydrogenCount()
            if count >= self.max_count:
                return count
        return count

class AromaticRings(object):
    def __init__(self, max_count):
        self.max_count = max_count
        # The single ring case is easy; if there's an aromatic atom in a ring
        # then there's an aromatic ring.
        self._single_matcher = OBSmartsPattern()
        assert self._single_matcher.Init("[aR]")
        
    if _HAS_HASMATCH:
        def HasMatch(self, mol):
            return self._single_matcher.HasMatch(mol)
    else:
        def HasMatch(self, mol):
            return self._single_matcher.Match(mol, True)
        

    def NumUniqueMatches(self, mol):
        num_rings = 0
        for ring in mol.GetSSSR():
            if ring.IsAromatic():
                num_rings += 1
                if num_rings == self.max_count:
                    break
        return num_rings


###

class HeteroAromaticRings(object):
    def __init__(self, max_count):
        self.max_count = max_count
        # The single ring case is easy; if there's an non-carbon aromatic atom
        # in a ring then there's a hetero-aromatic ring
        self._single_matcher = OBSmartsPattern()
        assert self._single_matcher.Init("[aR;!#6]")

    if _HAS_HASMATCH:
        def HasMatch(self, mol):
            return self._single_matcher.HasMatch(mol)
    else:
        def HasMatch(self, mol):
            return self._single_matcher.Match(mol, True)
        

    def NumUniqueMatches(self, mol):
        num_rings = 0
        for ring in mol.GetSSSR():
            if (ring.IsAromatic() and
                  any(mol.GetAtom(atom_id).GetAtomicNum() != 6 for atom_id in ring._path)):
                num_rings += 1
                if num_rings == self.max_count:
                    break
        return num_rings


class NumFragments(object):
    def __init__(self, max_count):
        if max_count >= 3:
            raise NotImplemented("<fragment> >= 3 not implemented")
    def HasMatch(self, mol):
        # Has at least one fragment, which is the same as having atoms
        return (mol.NumAtoms() > 0)
    def NumUniqueMatches(self, mol):
        # If the largest fragment is not the same size as the entire molecule
        # then there are at least two fragments
        n = mol.NumAtoms()
        if n == 0:
            # No atoms means no fragments
            return 0
        
        v = OBBitVec()
        mol.FindLargestFragment(v)
        if v.CountBits() == n:
            return 1
        
        return 2

_pattern_classes = {
    "<H>": HydrogenMatcher,
    "<aromatic-rings>": AromaticRings,
    "<hetero-aromatic-rings>": HeteroAromaticRings,
    "<fragments>": NumFragments,
    }

def ob_compile_pattern(pattern, max_count):
    if pattern in _pattern_classes:
        return _pattern_classes[pattern](max_count)
    
    if pattern.startswith("<"):
        raise NotImplementedError(pattern)

    matcher = OBSmartsPattern()
    if not matcher.Init(pattern):
        raise pattern_fingerprinter.UnsupportedPatternError(
            pattern, "Uninterpretable SMARTS pattern")
    return Matcher(matcher)

class OBPatternFingerprinter(pattern_fingerprinter.PatternFingerprinter):
    def __init__(self, patterns):
        assert patterns is not None
        super(OBPatternFingerprinter, self).__init__(patterns, ob_compile_pattern)
        
    def fingerprint(self, mol):
        bytes = [0] * self.num_bytes
        for matcher, largest_count, count_info_tuple in self.matcher_definitions:
            #print matcher, largest_count, count_info_tuple
            if largest_count == 1:
                if matcher.HasMatch(mol):
                    count_info = count_info_tuple[0]
                    bytes[count_info.byteno] |= count_info.bitmask
            else:
                # There's no good way to get the number of unique
                # matches without iterating over all of them.
                actual_count = matcher.NumUniqueMatches(mol)
                for count_info in count_info_tuple:
                    if actual_count >= count_info.count:
                        bytes[count_info.byteno] |= count_info.bitmask
                    else:
                        break
        return "".join(map(chr, bytes))


class _CachedFingerprinters(dict):
    def __missing__(self, name):
        patterns = pattern_fingerprinter._load_named_patterns(name)
        fingerprinter = OBPatternFingerprinter(patterns)
        self[name] = fingerprinter
        return fingerprinter
_cached_fingerprinters = _CachedFingerprinters()

# XXX Why are there two "Fingerprinter" classes?
# XX Shouldn't they be merged?

_base = openbabel._base.clone(
    software = SOFTWARE)
    

SubstructOpenBabelFingerprinter_v1 = _base.clone(
    name = "ChemFP-Substruct-OpenBabel/1",
    num_bits = 881,
    make_fingerprinter = lambda: _cached_fingerprinters["substruct"].fingerprint)
    

RDMACCSOpenBabelFingerprinter_v1 = _base.clone(
    name = "RDMACCS-OpenBabel/1",
    num_bits = 166,
    make_fingerprinter = lambda: _cached_fingerprinters["rdmaccs"].fingerprint)