This file is indexed.

/usr/lib/python3/dist-packages/yt/testing.py is in python3-yt 3.2.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
"""
Utilities to aid testing.


"""
from __future__ import print_function

#-----------------------------------------------------------------------------
# Copyright (c) 2013, yt Development Team.
#
# Distributed under the terms of the Modified BSD License.
#
# The full license is in the file COPYING.txt, distributed with this software.
#-----------------------------------------------------------------------------

import hashlib
from yt.extern.six.moves import cPickle
import itertools as it
import numpy as np
import importlib
import os
from yt.funcs import *
from yt.config import ytcfg
from numpy.testing import assert_array_equal, assert_almost_equal, \
    assert_approx_equal, assert_array_almost_equal, assert_equal, \
    assert_array_less, assert_string_equal, assert_array_almost_equal_nulp,\
    assert_allclose, assert_raises
from yt.units.yt_array import uconcatenate
import yt.fields.api as field_api
from yt.convenience import load


def assert_rel_equal(a1, a2, decimals, err_msg='', verbose=True):
    # We have nan checks in here because occasionally we have fields that get
    # weighted without non-zero weights.  I'm looking at you, particle fields!
    if isinstance(a1, np.ndarray):
        assert(a1.size == a2.size)
        # Mask out NaNs
        assert((np.isnan(a1) == np.isnan(a2)).all())
        a1[np.isnan(a1)] = 1.0
        a2[np.isnan(a2)] = 1.0
        # Mask out 0
        ind1 = np.array(np.abs(a1) < np.finfo(a1.dtype).eps)
        ind2 = np.array(np.abs(a2) < np.finfo(a2.dtype).eps)
        assert((ind1 == ind2).all())
        a1[ind1] = 1.0
        a2[ind2] = 1.0
    elif np.any(np.isnan(a1)) and np.any(np.isnan(a2)):
        return True
    if not isinstance(a1, np.ndarray) and a1 == a2 == 0.0:
        # NANS!
        a1 = a2 = 1.0
    return assert_almost_equal(np.array(a1)/np.array(a2), 1.0, decimals, err_msg=err_msg,
                               verbose=verbose)

def amrspace(extent, levels=7, cells=8):
    """Creates two numpy arrays representing the left and right bounds of
    an AMR grid as well as an array for the AMR level of each cell.

    Parameters
    ----------
    extent : array-like
        This a sequence of length 2*ndims that is the bounds of each dimension.
        For example, the 2D unit square would be given by [0.0, 1.0, 0.0, 1.0].
        A 3D cylindrical grid may look like [0.0, 2.0, -1.0, 1.0, 0.0, 2*np.pi].
    levels : int or sequence of ints, optional
        This is the number of AMR refinement levels.  If given as a sequence (of
        length ndims), then each dimension will be refined down to this level.
        All values in this array must be the same or zero.  A zero valued dimension
        indicates that this dim should not be refined.  Taking the 3D cylindrical
        example above if we don't want refine theta but want r and z at 5 we would
        set levels=(5, 5, 0).
    cells : int, optional
        This is the number of cells per refinement level.

    Returns
    -------
    left : float ndarray, shape=(npoints, ndims)
        The left AMR grid points.
    right : float ndarray, shape=(npoints, ndims)
        The right AMR grid points.
    level : int ndarray, shape=(npoints,)
        The AMR level for each point.

    Examples
    --------
    >>> l, r, lvl = amrspace([0.0, 2.0, 1.0, 2.0, 0.0, 3.14], levels=(3,3,0), cells=2)
    >>> print l
    [[ 0.     1.     0.   ]
     [ 0.25   1.     0.   ]
     [ 0.     1.125  0.   ]
     [ 0.25   1.125  0.   ]
     [ 0.5    1.     0.   ]
     [ 0.     1.25   0.   ]
     [ 0.5    1.25   0.   ]
     [ 1.     1.     0.   ]
     [ 0.     1.5    0.   ]
     [ 1.     1.5    0.   ]]

    """
    extent = np.asarray(extent, dtype='f8')
    dextent = extent[1::2] - extent[::2]
    ndims = len(dextent)

    if isinstance(levels, int):
        minlvl = maxlvl = levels
        levels = np.array([levels]*ndims, dtype='int32')
    else:
        levels = np.asarray(levels, dtype='int32')
        minlvl = levels.min()
        maxlvl = levels.max()
        if minlvl != maxlvl and (minlvl != 0 or set([minlvl, maxlvl]) != set(levels)):
            raise ValueError("all levels must have the same value or zero.")
    dims_zero = (levels == 0)
    dims_nonzero = ~dims_zero
    ndims_nonzero = dims_nonzero.sum()

    npoints = (cells**ndims_nonzero - 1)*maxlvl + 1
    left = np.empty((npoints, ndims), dtype='float64')
    right = np.empty((npoints, ndims), dtype='float64')
    level = np.empty(npoints, dtype='int32')

    # fill zero dims
    left[:,dims_zero] = extent[::2][dims_zero]
    right[:,dims_zero] = extent[1::2][dims_zero]

    # fill non-zero dims
    dcell = 1.0 / cells
    left_slice =  tuple([slice(extent[2*n], extent[2*n+1], extent[2*n+1]) if \
        dims_zero[n] else slice(0.0,1.0,dcell) for n in range(ndims)])
    right_slice = tuple([slice(extent[2*n+1], extent[2*n], -extent[2*n+1]) if \
        dims_zero[n] else slice(dcell,1.0+dcell,dcell) for n in range(ndims)])
    left_norm_grid = np.reshape(np.mgrid[left_slice].T.flat[ndims:], (-1, ndims))
    lng_zero = left_norm_grid[:,dims_zero]
    lng_nonzero = left_norm_grid[:,dims_nonzero]

    right_norm_grid = np.reshape(np.mgrid[right_slice].T.flat[ndims:], (-1, ndims))
    rng_zero = right_norm_grid[:,dims_zero]
    rng_nonzero = right_norm_grid[:,dims_nonzero]

    level[0] = maxlvl
    left[0,:] = extent[::2]
    right[0,dims_zero] = extent[1::2][dims_zero]
    right[0,dims_nonzero] = (dcell**maxlvl)*dextent[dims_nonzero] + extent[::2][dims_nonzero]
    for i, lvl in enumerate(range(maxlvl, 0, -1)):
        start = (cells**ndims_nonzero - 1)*i + 1
        stop = (cells**ndims_nonzero - 1)*(i+1) + 1
        dsize = dcell**(lvl-1) * dextent[dims_nonzero]
        level[start:stop] = lvl
        left[start:stop,dims_zero] = lng_zero
        left[start:stop,dims_nonzero] = lng_nonzero*dsize + extent[::2][dims_nonzero]
        right[start:stop,dims_zero] = rng_zero
        right[start:stop,dims_nonzero] = rng_nonzero*dsize + extent[::2][dims_nonzero]

    return left, right, level

def fake_random_ds(
        ndims, peak_value = 1.0,
        fields = ("density", "velocity_x", "velocity_y", "velocity_z"),
        units = ('g/cm**3', 'cm/s', 'cm/s', 'cm/s'),
        particle_fields=None, particle_field_units=None,
        negative = False, nprocs = 1, particles = 0, length_unit=1.0):
    from yt.frontends.stream.api import load_uniform_grid
    if not iterable(ndims):
        ndims = [ndims, ndims, ndims]
    else:
        assert(len(ndims) == 3)
    if not iterable(negative):
        negative = [negative for f in fields]
    assert(len(fields) == len(negative))
    offsets = []
    for n in negative:
        if n:
            offsets.append(0.5)
        else:
            offsets.append(0.0)
    data = {}
    for field, offset, u in zip(fields, offsets, units):
        v = (np.random.random(ndims) - offset) * peak_value
        if field[0] == "all":
            data['number_of_particles'] = v.size
            v = v.ravel()
        data[field] = (v, u)
    if particles:
        if particle_fields is not None:
            for field, unit in zip(particle_fields, particle_field_units):
                if field in ('particle_position', 'particle_velocity'):
                    data['io', field] = (np.random.random((particles, 3)), unit)
                else:
                    data['io', field] = (np.random.random(size=particles), unit)
        else:
            for f in ('particle_position_%s' % ax for ax in 'xyz'):
                data['io', f] = (np.random.random(size=particles), 'code_length')
            for f in ('particle_velocity_%s' % ax for ax in 'xyz'):
                data['io', f] = (np.random.random(size=particles) - 0.5, 'cm/s')
            data['io', 'particle_mass'] = (np.random.random(particles), 'g')
        data['number_of_particles'] = particles
    ug = load_uniform_grid(data, ndims, length_unit=length_unit, nprocs=nprocs)
    return ug

_geom_transforms = {
    # These are the bounds we want.  Cartesian we just assume goes 0 .. 1.
    'cartesian'  : ( (0.0, 0.0, 0.0), (1.0, 1.0, 1.0) ),
    'spherical'  : ( (0.0, 0.0, 0.0), (1.0, np.pi, 2*np.pi) ),
    'cylindrical': ( (0.0, 0.0, 0.0), (1.0, 1.0, 2.0*np.pi) ), # rzt
    'polar'      : ( (0.0, 0.0, 0.0), (1.0, 2.0*np.pi, 1.0) ), # rtz
    'geographic' : ( (-90.0, -180.0, 0.0), (90.0, 180.0, 1000.0) ), # latlonalt
}

def fake_amr_ds(fields = ("Density",), geometry = "cartesian"):
    from yt.frontends.stream.api import load_amr_grids
    LE, RE = _geom_transforms[geometry]
    LE = np.array(LE)
    RE = np.array(RE)
    data = []
    for gspec in _amr_grid_index:
        level, left_edge, right_edge, dims = gspec
        left_edge = left_edge * (RE - LE) + LE
        right_edge = right_edge * (RE - LE) + LE
        gdata = dict(level = level,
                     left_edge = left_edge,
                     right_edge = right_edge,
                     dimensions = dims)
        for f in fields:
            gdata[f] = np.random.random(dims)
        data.append(gdata)
    bbox = np.array([LE, RE]).T
    return load_amr_grids(data, [32, 32, 32], 1.0, geometry=geometry, bbox=bbox)

def fake_particle_ds(
        fields = ("particle_position_x",
                  "particle_position_y",
                  "particle_position_z",
                  "particle_mass",
                  "particle_velocity_x",
                  "particle_velocity_y",
                  "particle_velocity_z"),
        units = ('cm', 'cm', 'cm', 'g', 'cm/s', 'cm/s', 'cm/s'),
        negative = (False, False, False, False, True, True, True),
        npart = 16**3, length_unit=1.0):
    from yt.frontends.stream.api import load_particles
    if not iterable(negative):
        negative = [negative for f in fields]
    assert(len(fields) == len(negative))
    offsets = []
    for n in negative:
        if n:
            offsets.append(0.5)
        else:
            offsets.append(0.0)
    data = {}
    for field, offset, u in zip(fields, offsets, units):
        if "position" in field:
            v = np.random.normal(npart, 0.5, 0.25)
            np.clip(v, 0.0, 1.0, v)
        v = (np.random.random(npart) - offset)
        data[field] = (v, u)
    bbox = np.array([[0.0, 1.0], [0.0, 1.0], [0.0, 1.0]])
    ds = load_particles(data, 1.0, bbox=bbox)
    return ds

def expand_keywords(keywords, full=False):
    """
    expand_keywords is a means for testing all possible keyword
    arguments in the nosetests.  Simply pass it a dictionary of all the
    keyword arguments and all of the values for these arguments that you
    want to test.

    It will return a list of kwargs dicts containing combinations of
    the various kwarg values you passed it.  These can then be passed
    to the appropriate function in nosetests.

    If full=True, then every possible combination of keywords is produced,
    otherwise, every keyword option is included at least once in the output
    list.  Be careful, by using full=True, you may be in for an exponentially
    larger number of tests!

    keywords : dict
        a dictionary where the keys are the keywords for the function,
        and the values of each key are the possible values that this key
        can take in the function

   full : bool
        if set to True, every possible combination of given keywords is
        returned

    Returns
    -------
    array of dicts
        An array of dictionaries to be individually passed to the appropriate
        function matching these kwargs.

    Examples
    --------
    >>> keywords = {}
    >>> keywords['dpi'] = (50, 100, 200)
    >>> keywords['cmap'] = ('algae', 'jet')
    >>> list_of_kwargs = expand_keywords(keywords)
    >>> print list_of_kwargs

    array([{'cmap': 'algae', 'dpi': 50},
           {'cmap': 'jet', 'dpi': 100},
           {'cmap': 'algae', 'dpi': 200}], dtype=object)

    >>> list_of_kwargs = expand_keywords(keywords, full=True)
    >>> print list_of_kwargs

    array([{'cmap': 'algae', 'dpi': 50},
           {'cmap': 'algae', 'dpi': 100},
           {'cmap': 'algae', 'dpi': 200},
           {'cmap': 'jet', 'dpi': 50},
           {'cmap': 'jet', 'dpi': 100},
           {'cmap': 'jet', 'dpi': 200}], dtype=object)

    >>> for kwargs in list_of_kwargs:
    ...     write_projection(*args, **kwargs)
    """

    # if we want every possible combination of keywords, use iter magic
    if full:
        keys = sorted(keywords)
        list_of_kwarg_dicts = np.array([dict(zip(keys, prod)) for prod in \
                              it.product(*(keywords[key] for key in keys))])

    # if we just want to probe each keyword, but not necessarily every
    # combination
    else:
        # Determine the maximum number of values any of the keywords has
        num_lists = 0
        for val in keywords.values():
            if isinstance(val, str):
                num_lists = max(1.0, num_lists)
            else:
                num_lists = max(len(val), num_lists)

        # Construct array of kwargs dicts, each element of the list is a different
        # **kwargs dict.  each kwargs dict gives a different combination of
        # the possible values of the kwargs

        # initialize array
        list_of_kwarg_dicts = np.array([dict() for x in range(num_lists)])

        # fill in array
        for i in np.arange(num_lists):
            list_of_kwarg_dicts[i] = {}
            for key in keywords.keys():
                # if it's a string, use it (there's only one)
                if isinstance(keywords[key], str):
                    list_of_kwarg_dicts[i][key] = keywords[key]
                # if there are more options, use the i'th val
                elif i < len(keywords[key]):
                    list_of_kwarg_dicts[i][key] = keywords[key][i]
                # if there are not more options, use the 0'th val
                else:
                    list_of_kwarg_dicts[i][key] = keywords[key][0]

    return list_of_kwarg_dicts

def requires_module(module):
    """
    Decorator that takes a module name as an argument and tries to import it.
    If the module imports without issue, the function is returned, but if not,
    a null function is returned. This is so tests that depend on certain modules
    being imported will not fail if the module is not installed on the testing
    platform.
    """
    def ffalse(func):
        return lambda: None
    def ftrue(func):
        return func
    try:
        importlib.import_module(module)
    except ImportError:
        return ffalse
    else:
        return ftrue

def requires_file(req_file):
    path = ytcfg.get("yt", "test_data_dir")
    def ffalse(func):
        return lambda: None
    def ftrue(func):
        return func
    if os.path.exists(req_file):
        return ftrue
    else:
        if os.path.exists(os.path.join(path,req_file)):
            return ftrue
        else:
            return ffalse

def units_override_check(fn):
    ytcfg["yt","skip_dataset_cache"] = "True"
    units_list = ["length","time","mass","velocity",
                  "magnetic","temperature"]
    ds1 = load(fn)
    units_override = {}
    attrs1 = []
    attrs2 = []
    for u in units_list:
        unit_attr = getattr(ds1, "%s_unit" % u, None)
        if unit_attr is not None:
            attrs1.append(unit_attr)
            units_override["%s_unit" % u] = (unit_attr.v, str(unit_attr.units))
    del ds1
    ds2 = load(fn, units_override=units_override)
    ytcfg["yt","skip_dataset_cache"] = "False"
    assert(len(ds2.units_override) > 0)
    for u in units_list:
        unit_attr = getattr(ds2, "%s_unit" % u, None)
        if unit_attr is not None:
            attrs2.append(unit_attr)
    yield assert_equal, attrs1, attrs2

# This is an export of the 40 grids in IsolatedGalaxy that are of level 4 or
# lower.  It's just designed to give a sample AMR index to deal with.
_amr_grid_index = [
 [ 0,
  [0.0,0.0,0.0],
  [1.0,1.0,1.0],
  [32,32,32],
 ],
 [ 1,
  [0.25,0.21875,0.25],
  [0.5,0.5,0.5],
  [16,18,16],
 ],
 [ 1,
  [0.5,0.21875,0.25],
  [0.75,0.5,0.5],
  [16,18,16],
 ],
 [ 1,
  [0.21875,0.5,0.25],
  [0.5,0.75,0.5],
  [18,16,16],
 ],
 [ 1,
  [0.5,0.5,0.25],
  [0.75,0.75,0.5],
  [16,16,16],
 ],
 [ 1,
  [0.25,0.25,0.5],
  [0.5,0.5,0.75],
  [16,16,16],
 ],
 [ 1,
  [0.5,0.25,0.5],
  [0.75,0.5,0.75],
  [16,16,16],
 ],
 [ 1,
  [0.25,0.5,0.5],
  [0.5,0.75,0.75],
  [16,16,16],
 ],
 [ 1,
  [0.5,0.5,0.5],
  [0.75,0.75,0.75],
  [16,16,16],
 ],
 [ 2,
  [0.5,0.5,0.5],
  [0.71875,0.71875,0.71875],
  [28,28,28],
 ],
 [ 3,
  [0.5,0.5,0.5],
  [0.6640625,0.65625,0.6796875],
  [42,40,46],
 ],
 [ 4,
  [0.5,0.5,0.5],
  [0.59765625,0.6015625,0.6015625],
  [50,52,52],
 ],
 [ 2,
  [0.28125,0.5,0.5],
  [0.5,0.734375,0.71875],
  [28,30,28],
 ],
 [ 3,
  [0.3359375,0.5,0.5],
  [0.5,0.671875,0.6640625],
  [42,44,42],
 ],
 [ 4,
  [0.40625,0.5,0.5],
  [0.5,0.59765625,0.59765625],
  [48,50,50],
 ],
 [ 2,
  [0.5,0.28125,0.5],
  [0.71875,0.5,0.71875],
  [28,28,28],
 ],
 [ 3,
  [0.5,0.3359375,0.5],
  [0.671875,0.5,0.6640625],
  [44,42,42],
 ],
 [ 4,
  [0.5,0.40625,0.5],
  [0.6015625,0.5,0.59765625],
  [52,48,50],
 ],
 [ 2,
  [0.28125,0.28125,0.5],
  [0.5,0.5,0.71875],
  [28,28,28],
 ],
 [ 3,
  [0.3359375,0.3359375,0.5],
  [0.5,0.5,0.671875],
  [42,42,44],
 ],
 [ 4,
  [0.46484375,0.37890625,0.50390625],
  [0.4765625,0.390625,0.515625],
  [6,6,6],
 ],
 [ 4,
  [0.40625,0.40625,0.5],
  [0.5,0.5,0.59765625],
  [48,48,50],
 ],
 [ 2,
  [0.5,0.5,0.28125],
  [0.71875,0.71875,0.5],
  [28,28,28],
 ],
 [ 3,
  [0.5,0.5,0.3359375],
  [0.6796875,0.6953125,0.5],
  [46,50,42],
 ],
 [ 4,
  [0.5,0.5,0.40234375],
  [0.59375,0.6015625,0.5],
  [48,52,50],
 ],
 [ 2,
  [0.265625,0.5,0.28125],
  [0.5,0.71875,0.5],
  [30,28,28],
 ],
 [ 3,
  [0.3359375,0.5,0.328125],
  [0.5,0.65625,0.5],
  [42,40,44],
 ],
 [ 4,
  [0.40234375,0.5,0.40625],
  [0.5,0.60546875,0.5],
  [50,54,48],
 ],
 [ 2,
  [0.5,0.265625,0.28125],
  [0.71875,0.5,0.5],
  [28,30,28],
 ],
 [ 3,
  [0.5,0.3203125,0.328125],
  [0.6640625,0.5,0.5],
  [42,46,44],
 ],
 [ 4,
  [0.5,0.3984375,0.40625],
  [0.546875,0.5,0.5],
  [24,52,48],
 ],
 [ 4,
  [0.546875,0.41796875,0.4453125],
  [0.5625,0.4375,0.5],
  [8,10,28],
 ],
 [ 4,
  [0.546875,0.453125,0.41796875],
  [0.5546875,0.48046875,0.4375],
  [4,14,10],
 ],
 [ 4,
  [0.546875,0.4375,0.4375],
  [0.609375,0.5,0.5],
  [32,32,32],
 ],
 [ 4,
  [0.546875,0.4921875,0.41796875],
  [0.56640625,0.5,0.4375],
  [10,4,10],
 ],
 [ 4,
  [0.546875,0.48046875,0.41796875],
  [0.5703125,0.4921875,0.4375],
  [12,6,10],
 ],
 [ 4,
  [0.55859375,0.46875,0.43359375],
  [0.5703125,0.48046875,0.4375],
  [6,6,2],
 ],
 [ 2,
  [0.265625,0.28125,0.28125],
  [0.5,0.5,0.5],
  [30,28,28],
 ],
 [ 3,
  [0.328125,0.3359375,0.328125],
  [0.5,0.5,0.5],
  [44,42,44],
 ],
 [ 4,
  [0.4140625,0.40625,0.40625],
  [0.5,0.5,0.5],
  [44,48,48],
 ],
]

def check_results(func):
    r"""This is a decorator for a function to verify that the (numpy ndarray)
    result of a function is what it should be.

    This function is designed to be used for very light answer testing.
    Essentially, it wraps around a larger function that returns a numpy array,
    and that has results that should not change.  It is not necessarily used
    inside the testing scripts themselves, but inside testing scripts written
    by developers during the testing of pull requests and new functionality.
    If a hash is specified, it "wins" and the others are ignored.  Otherwise,
    tolerance is 1e-8 (just above single precision.)

    The correct results will be stored if the command line contains
    --answer-reference , and otherwise it will compare against the results on
    disk.  The filename will be func_results_ref_FUNCNAME.cpkl where FUNCNAME
    is the name of the function being tested.

    If you would like more control over the name of the pickle file the results
    are stored in, you can pass the result_basename keyword argument to the
    function you are testing.  The check_results decorator will use the value
    of the keyword to construct the filename of the results data file.  If
    result_basename is not specified, the name of the testing function is used.

    This will raise an exception if the results are not correct.

    Examples
    --------

    @check_results
    def my_func(ds):
        return ds.domain_width

    my_func(ds)

    @check_results
    def field_checker(dd, field_name):
        return dd[field_name]

    field_cheker(ds.all_data(), 'density', result_basename='density')

    """
    def compute_results(func):
        def _func(*args, **kwargs):
            name = kwargs.pop("result_basename", func.__name__)
            rv = func(*args, **kwargs)
            if hasattr(rv, "convert_to_cgs"):
                rv.convert_to_cgs()
                _rv = rv.ndarray_view()
            else:
                _rv = rv
            mi = _rv.min()
            ma = _rv.max()
            st = _rv.std(dtype="float64")
            su = _rv.sum(dtype="float64")
            si = _rv.size
            ha = hashlib.md5(_rv.tostring()).hexdigest()
            fn = "func_results_ref_%s.cpkl" % (name)
            with open(fn, "wb") as f:
                cPickle.dump( (mi, ma, st, su, si, ha), f)
            return rv
        return _func
    from yt.mods import unparsed_args
    if "--answer-reference" in unparsed_args:
        return compute_results(func)

    def compare_results(func):
        def _func(*args, **kwargs):
            name = kwargs.pop("result_basename", func.__name__)
            rv = func(*args, **kwargs)
            if hasattr(rv, "convert_to_cgs"):
                rv.convert_to_cgs()
                _rv = rv.ndarray_view()
            else:
                _rv = rv
            vals = (_rv.min(),
                    _rv.max(),
                    _rv.std(dtype="float64"),
                    _rv.sum(dtype="float64"),
                    _rv.size,
                    hashlib.md5(_rv.tostring()).hexdigest() )
            fn = "func_results_ref_%s.cpkl" % (name)
            if not os.path.exists(fn):
                print("Answers need to be created with --answer-reference .")
                return False
            with open(fn, "rb") as f:
                ref = cPickle.load(f)
            print("Sizes: %s (%s, %s)" % (vals[4] == ref[4], vals[4], ref[4]))
            assert_allclose(vals[0], ref[0], 1e-8, err_msg="min")
            assert_allclose(vals[1], ref[1], 1e-8, err_msg="max")
            assert_allclose(vals[2], ref[2], 1e-8, err_msg="std")
            assert_allclose(vals[3], ref[3], 1e-8, err_msg="sum")
            assert_equal(vals[4], ref[4])
            print("Hashes equal: %s" % (vals[-1] == ref[-1]))
            return rv
        return _func
    return compare_results(func)

def periodicity_cases(ds):
    # This is a generator that yields things near the corners.  It's good for
    # getting different places to check periodicity.
    yield (ds.domain_left_edge + ds.domain_right_edge)/2.0
    dx = ds.domain_width / ds.domain_dimensions
    # We start one dx in, and only go to one in as well.
    for i in (1, ds.domain_dimensions[0] - 2):
        for j in (1, ds.domain_dimensions[1] - 2):
            for k in (1, ds.domain_dimensions[2] - 2):
                center = dx * np.array([i,j,k]) + ds.domain_left_edge
                yield center

def run_nose(verbose=False, run_answer_tests=False, answer_big_data=False,
             call_pdb = False):
    import nose, os, sys, yt
    from yt.funcs import mylog
    orig_level = mylog.getEffectiveLevel()
    mylog.setLevel(50)
    nose_argv = sys.argv
    nose_argv += ['--exclude=answer_testing','--detailed-errors', '--exe']
    if call_pdb:
        nose_argv += ["--pdb", "--pdb-failures"]
    if verbose:
        nose_argv.append('-v')
    if run_answer_tests:
        nose_argv.append('--with-answer-testing')
    if answer_big_data:
        nose_argv.append('--answer-big-data')
    initial_dir = os.getcwd()
    yt_file = os.path.abspath(yt.__file__)
    yt_dir = os.path.dirname(yt_file)
    os.chdir(yt_dir)
    try:
        nose.run(argv=nose_argv)
    finally:
        os.chdir(initial_dir)
        mylog.setLevel(orig_level)

def assert_allclose_units(actual, desired, rtol=1e-7, atol=0, **kwargs):
    """Raise an error if two objects are not equal up to desired tolerance

    This is a wrapper for :func:`numpy.testing.assert_allclose` that also
    verifies unit consistency

    Parameters
    ----------
    actual : array-like
        Array obtained (possibly with attached units)
    desired : array-like
        Array to compare with (possibly with attached units)
    rtol : float, oprtional
        Relative tolerance, defaults to 1e-7
    atol : float or quantity, optional
        Absolute tolerance. If units are attached, they must be consistent
        with the units of ``actual`` and ``desired``. If no units are attached,
        assumes the same units as ``desired``. Defaults to zero.

    Also accepts additional keyword arguments accepted by
    :func:`numpy.testing.assert_allclose`, see the documentation of that
    function for details.
    """
    # Create a copy to ensure this function does not alter input arrays
    act = YTArray(actual)
    des = YTArray(desired)

    try:
        des = des.in_units(act.units)
    except YTUnitOperationError:
        raise AssertionError("Units of actual (%s) and desired (%s) do not have "
                             "equivalent dimensions" % (act.units, des.units))

    rt = YTArray(rtol)
    if not rt.units.is_dimensionless:
        raise AssertionError("Units of rtol (%s) are not "
                             "dimensionless" % rt.units)

    if not isinstance(atol, YTArray):
        at = YTQuantity(atol, des.units)

    try:
        at = at.in_units(act.units)
    except YTUnitOperationError:
        raise AssertionError("Units of atol (%s) and actual (%s) do not have "
                             "equivalent dimensions" % (at.units, act.units))

    # units have been validated, so we strip units before calling numpy
    # to avoid spurious errors
    act = act.value
    des = des.value
    rt = rt.value
    at = at.value

    return assert_allclose(act, des, rt, at, **kwargs)